Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 625 - 656
DOI https://doi.org/10.1051/eucass/201911625
Published online 08 February 2019
  1. Poinsot, T., and D. Veynante. 2001. Theoretical and numerical combustion. Philadelphia, PA: R. T. Edwards, Inc. 473 p. [Google Scholar]
  2. Peters, N. 2000. Turbulent combustion. Cambridge University Press. 324 p. [Google Scholar]
  3. Pope, S. 1985. PDF methods for turbulent reacting flows. Prog. Energ. Combust. Sci. 27:119–192. [Google Scholar]
  4. Vulis, L. A. 1961. Thermal rezhime of combustion. New York, NY: McGraw-Hill. Ch. 3. (Translation from the Russian edition: 1954. Teplovoy rezhim goreniya. Moscow–Leningrad: Gosenergoizdat. 288 p.) [Google Scholar]
  5. Chomiak, J., and A. Karlsson. 1996. Flame liftoff in diesel sprays. 26th Symposium (International) on Combustion. Pittsburg, PA: The Combustion Institute. 2557–2504. [Google Scholar]
  6. Golovitchev, V., N. Nordin, R. Jarnicki, and J. Chomiak. 2000. 3-D Diesel spray similutions using a new detailed chemistry turbulent combustion model. SAE Technical Paper No. 2000-01-1891. doi:10.4271/2000-01-1891. [Google Scholar]
  7. Magnussen, B. F., and B. H. Hjertager. 1976. On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. Symposium (International) on Combustion. 16(1):719–729. [Google Scholar]
  8. Magnussen, B. 1981. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow. 19th Aerospace Sciences Meeting. St. Louis, MO. doi: 10.2514/6.1981-42. [Google Scholar]
  9. Ertesvag, I. S., and B. F. Magnussen. 2000. The eddy dissipation turbulence energy cascade model. Combust. Sci. Techol. 159:213. [Google Scholar]
  10. Magnussen, B. F. 2005. The eddy dissipation concept: A bridge between science and technology. ECCOMAS Thematic Conference on Computational Combustion. 21–24. [Google Scholar]
  11. Sabelnikov, V., and C. Fureby. 2013. LES combustion modeling for high Re flames using a multi-phase analogy. Combust. Flame 160:83–96. [Google Scholar]
  12. Sabelnikov, V., and C. Fureby. 2013. Extended LES-PaSR model for simulation of turbulent combustion. Progress in propulsion physics. Eds. L. DeLuca, C. Bonnal, O. Haidn, and S. Frolov. EUCASS advances in aerospace sciences ser, TORUS PRESS –EDP Sciences. 4:539–568. [Google Scholar]
  13. Kosters, A., V. Golovitchev, and A. Karlsson. 2012. A numerical study of the effect of EGR on flame lift-off in n-heptane sprays using a novel PaSR model implemented in OpenFOAM. SAE Int. J. Fuels Lubr. 5(2):604–610. doi:10.4271/2012-01-0153. [Google Scholar]
  14. Batchelor, G. K., and A. A. Townsend. 1949. The nature of turbulent motion at large wave-numbers. Proc. Roy. Soc. Lond. A Mat. 199:238. [Google Scholar]
  15. Chomiak, J. 1970. A possible propagation mechanism of turbulent flames at high Reynolds numbers. Combust. Flame 15:319. [Google Scholar]
  16. Woodward, P. R., D. H. Porter, I. Sytine, S. E. Anderson, A. A. Mirin, B. C. Curtis, R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, K.-H. Winkler, and S. W. Hodson. Very high resolution simulations of compressible turbulent flows. Computational fluid dynamics. 4th UNAM Supercomputing Conference Proceedings. Eds. E. Ramos, G. Cisneros, A. Fernandez-Flores, and A. Santillan-Gonzalez. World Scientific. 13 p. [Google Scholar]
  17. Tanahashi, M., M. Fujimura, and T. Miyauchi. 2000. Coherent fine scale eddies in turbulent premixed flames. Proc. Combust. Inst. 28:5729. [Google Scholar]
  18. Tanahashi, M., M. Sato, M. Shimura, and T. Miyauchi. 2008. DNS and combined laser diagnostics of turbulent combustion. J. Therm. Sci. Tech. Jpn. 3:391. [Google Scholar]
  19. Refloch, A., B. Courbet, A. Murrone, et al. CEDRE software. 10 p. Available at: http://www.aerospacelab-journal.org/sites/www.aerospacelab-journal.org/|les/AL2-11.pdf (accessed August 11, 2017). [Google Scholar]
  20. Chevalier, P., B. Courbet, D. Dutoya, P. Klotz, E. Ruiz, J. Troyes, and P. Villedieu. 2005. CEDRE: Development and validation of a multiphysics computational software. 1st European Conference for Aerospace Sciences Proceedings. [Google Scholar]
  21. Petrova, N. 2015. Turbulence–chemistry interaction models for numerical simulation of aeronautical propulsion systems. Ecole Polytechnique. PhD Thesis. [Google Scholar]
  22. Moreau, P., J. Labbe, F. Dupoirieux, and R. Borghi. 1985. Experimental and numerical study of a turbulent recirculation zone with combustion. 5th Symposium on Turbulent Shear Flows. 1. [Google Scholar]
  23. Magre, P., P. Moreau, G. Collin, R. Borghi, and M. P. ealat. 1988. Further studies by CARS of premixed turbulent combustion in a high velocity flow. Combust. Flame 71(2):147–168. [Google Scholar]
  24. Westbrook, C. K., and F. L. Dryer. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27(1-2):31–43. [Google Scholar]
  25. Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Golden-berg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, Jr., V. V. Lissianski, and Z. Qin. GRi-Mech. Available at: http://www. me.berkeley.edu/gri mech/ (accessed August 11, 2017). [Google Scholar]
  26. Goodwin, D. G., H. K. Moffat, and R. L. Speth. 2014. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Ver. 2.2.1. Available at: https://zenodo.org/record/45206 (accessed March 21, 2018). [Google Scholar]