Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 657 - 676
DOI https://doi.org/10.1051/eucass/201911657
Published online 08 February 2019
  1. Wild, J., J. Brezillon, O. Amoignon, J. Quest, F. Moens, and D. Quagliarella. 2007. Advanced high-lift design by numerical methods and wind tunnel verification within the European Project EUROLIFT II. AIAA Paper No. 2007-4300. 18 p. [Google Scholar]
  2. Kanazaki, M., T. Imamura, S. Jeong, and K. Yamamoto. 2008. High-lift wing design in consideration of sweep angle effect using Kriging model. AIAA Paper No. 2008-175. 16 p. [Google Scholar]
  3. Dandois, J., V. Brunet, P. Molton, J. C. Abart, and A. Lepage. 2010. Buffet control by means of mechanical and fluidic vortex generators. AIAA Paper No. 2010-4975. 14 p. [Google Scholar]
  4. Li, C., S. Zhu, Y. L. Xu, and Y. Xiao. 2013. 2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow. Renew. Energ. 51:317–330. [Google Scholar]
  5. Narayan, J. P. 1998. 2.5-D numerical simulation of acoustic wave propagation. Pure Appl. Geophys. 151(1):47–61. [Google Scholar]
  6. Desquesnes, G. 2008. Euler equations in perturbation 2.5-D: A new system for acoustic modal propagation. AIAA Paper No. 2008-2822. 11 p. [Google Scholar]
  7. Chen, Q., R. Temam, and J. J. Tribbia. 2008. Simulations of the 2.5D inviscid primitive equations in a limited domain. J. Comput. Phys. 227(23):9865–9884. [Google Scholar]
  8. Kalise, D., and I. Lie. 2012. Modeling and numerical approximation of a 2.5D set of equations for mesoscale atmospheric processes. J. Comput. Phys. 231(21):7274–7298. [Google Scholar]
  9. Coakley, T. J. 1983. Turbulence modeling methods for the compressible Navier–Stokes equations. AIAA Paper No. 83-1693. 14 p. [Google Scholar]
  10. Coakley, T. J., and T. Hsieh. 1985. A comparison between implicit and hybrid methods for the calculation of steady and unsteady inlet flows. AIAA Paper No. 85-1125. 17 p. [Google Scholar]
  11. Vlasenko, V. V., E. V. Kazhan, E. S. Matyash, S. V. Mikhaylov, and A. I. Troshin. 2015. Chislennaya realizatsiya neyavnoy skhemy i razlichnykh modeley turbulentnosti v raschetnom module ZEUS [Numerical realization of implicit scheme and of different turbulence models in ZEUS computing module]. Trudy TsAGI [TsAGI Transactions] 2735:5–49. [Google Scholar]
  12. Vlasenko, V. V. 2015. SOLVER3: dvadtsatiletniy opyt razvitiya i ispol'zovaniya nauchnoy programmy dlya modelirovaniya dvumernykh techeniy s goreniem [SOLVER3: Twenty-year experience of development and usage of scientific code for simulation of two-dimensional flows with combustion]. Trudy TsAGI [TsAGI Transactions] 2735:156–219. [Google Scholar]
  13. Bartlmä, F. 1975. Gasdynamik der Verbrennung. Springer-Verlag. 256 p. [Google Scholar]
  14. Vlasenko, V. V., and A. A. Shiryaeva. 2012. Numerical simulation of non-stationary propagation of combustion along a duct with supersonic flow of a viscid gas. P. I. Mech. Eng. J. Aer. 227(3):480–492. [Google Scholar]
  15. Langener, T., J. Steelant, P. Roncioni, P. Natale, and M. Marini. 2012. Preliminary performance analysis of the LAPCAT-MR2 by means of nose-to-tail computations. AIAA Paper No. 2012-5872. 16 p. [Google Scholar]
  16. Langener, T., J. Steelant, S. Karl, and K. Hannemann. 2013. Layout and design verification of a small scale scramjet combustion chamber. 21st Symposium (Internatial) on Airbreathing Engines Proceedings. Busan, Korea. ISABE Paper No. 2013-1655. 9–13. [Google Scholar]
  17. Hannemann, K., J. Martinez-Schramm, S. Laurence, S. Karl, T. Langener, and J. Steelant. 2014. Experimental and numerical analysis of the small scale LAPCAT II scramjet flow path in high enthalpy shock tunnel conditions. Space Propulsion. Cologne, Germany. SP2014-2969350. 8 p. [Google Scholar]
  18. Langener, T., J. Steelant, S. Karl, and K. Hannemann. 2014. Numerical validation of a free-flying scramjet powered vehicle at realistic wind tunnel conditions. Space Propulsion. Cologne, Germany. SP2014-2971766. [Google Scholar]
  19. Shiryaeva, A. A. 2015. Osobennosti chislennogo metoda i rezul'taty testirovaniya programmy ZEUS-S3pp dlya modelirovaniya trekhmernykh techeniy s goreniem [Special features of numerical method and results of testing ZEUS-S3pp code for for simulation of three-dimensional flows with combustion]. Trudy TsAGI [TsAGI Transactions] 2735:220–246. [Google Scholar]
  20. Vlasenko, V. V. 2014. About different ways to determine the heat effect and the combustion ecciency in a flow of reacting gas. TsAGI Science J. 45(1):35–59. [Google Scholar]