Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 613 - 624
DOI https://doi.org/10.1051/eucass/201911613
Published online 08 February 2019
  1. Miroshin, R. N. 1994. Bifurkatsii skorosti pri protekanii razrezhennogo gaza v ploskoy shcheli [Bifurcations of the velocity when a rarefied gas flows in a flat gap]. St. Petersburg State University Vestnik Ser. 1. 4(22):72–74. [Google Scholar]
  2. Miroshin, R. N. 1997. O luchevoy modeli vzaimodeystviya atomov razrezhennogo gaza s poverkhnost'yu [On the ray model of the interaction of atoms of a rarefied gas with a surface]. St. Petersburg State University Vestnik Ser. 1. 4(22):74–79. [Google Scholar]
  3. Miroshin, R. N. 1998. Reshenie zadachi o svobodnomolekulyarnom techenii gaza v polosti klina metodami nelineynoy dinamiki [Solution of the problem of free−molecular flow of gas in the wedge cavity by the methods of nonlinear dynamics]. St. Petersburg State University Vestnik Ser. 1. 1(1):73–77. [Google Scholar]
  4. Miroshin, R. N., and I. A. Khalidov. 2002. Lokal'nye metody v mekhanike splosh−nykh sred [Local methods in continuum mechanics]. St. Petersburg: St. Petersburg State University Publs. 1–202. [Google Scholar]
  5. Aksenova, O. A., and I. A. Khalidov. 2004. Sherokhovatost' poverkhnosti v aerodi−namike razrezhennogo gaza: fraktal'nye i statisticheskie modeli [Surface roughness in rarefied gas aerodynamics: Fractal and statistical models]. St. Petersburg: St. Petersburg State University Publs. 120 p. [Google Scholar]
  6. Aksenova, O. A., and I. A. Khalidov. 2011. Influence of rarefied gas–surface inter−action on flow stability in channels. AIP Conference D. Altman, NY: American Institute of Physics. 1333(1):447–451. [Google Scholar]
  7. Aksenova, O. A., and I. A. Khalidov. 2012. Computation of unstable rarefied gas flow in channels with different scattering functions. AIP Conference Proceedings. Melville, NY: American Institute of Physics. 1501:931–937. [Google Scholar]
  8. Aksenova, O. A. 2004. Sopostavlenie fraktal'noy i statisticheskoy modeley sherokhovatosti poverkhnosti v zadache o rasseyanii atomov razrezhennogo gaza [The comparison of fractal and statistical models of surface roughness in the problem of scattering rarefied gas atoms]. St. Petersburg State University Vestnik Ser. 1. 1(1):61–66. [Google Scholar]
  9. Pilipchuk, V. N. 2010. Nonlinear dynamics: Between linear and impact limits. Berlin: Springer. 360 p. [Google Scholar]
  10. Barantsev, R. G. 1972. Some problems of gas–solid surface interaction. Prog. Aerosp. Sci. 13:1–80. [Google Scholar]