Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 295 - 316
DOI https://doi.org/10.1051/eucass/201911295
Published online 08 February 2019
  1. Gunder, D. F., and D. R. Friant. 1950. Stability of flow in a rocket motor. J. Appl. Mech. ASME T. 17(3):327–333. [Google Scholar]
  2. Summerfield, M. 1951. A theory of unstable combustion in liquid propellant rocket systems. J. Am. Rocket Soc. 21(5):108–114. [Google Scholar]
  3. Crocco, L. 1951. Aspects of combustion stability in liquid propellant rocket motors part I: Fundamentals. Low frequency instability with monopropellants. J. Am. Rocket Soc. 21(6):163–178. [Google Scholar]
  4. Wenzel, L. M., and J. R. Szuch. 1965. Analysis of chugging in liquid-bipropellant rocket engines using propellants with different vaporization rates. National Aeronautics and Space Administration. [Google Scholar]
  5. Casiano, M. J. 2010. Extensions to the time lag models for practical application to rocket engine stability design. The Pennsylvania State University. PhD Thesis. [Google Scholar]
  6. Webber, W. T. 1972. Calculation of low-frequency unsteady behavior of liquid rockets from droplet combustion parameters. J. Spacecraft Rockets 9(4):231–237. [Google Scholar]
  7. Bartrand, T. A. 1987. A study of low frequency combustion instability in rocket engine preburners using a heterogeneous stirred tank reactor model. Knoxville, TN: University of Tennessee. PhD Thesis. [Google Scholar]
  8. Empresarios Agrupados. 2007. EcosimPro. Available at: http://www.ecosimpro.com (accessed February 13, 2018). [Google Scholar]
  9. De Rosa, M., J. Steelant, J. Moral, and R. Per`ez. 2010. ESPSS simulation platform. Space Propulsion Conference. San Sebastian, Spain. [Google Scholar]
  10. Di Matteo, F., and J. Steelant. 2014. Multi-disciplinary propulsion simulations at engineering level by means of the European space propulsion system simulation ESPSS. RTO/AVT/VKI lecture ser. on fluid dynamics associated to launcher developers. St. Genesius-Rode, Belgium: Von Karman Institute. 318 p. [Google Scholar]
  11. Crocco, L. 1952. Aspects of combustion stability in liquid propellant rocket motors. Part I: Low frequency instability with bipropellants. High frequency instability. J. Am. Rocket Soc. 22(1):7–16. [Google Scholar]
  12. Crocco, L., and S.-I. Cheng. 1956. Theory of combustion instability in liquid propellant rocket motors. Cambridge University Press. 200 p. [Google Scholar]
  13. Szuch, J. R. 1969. Application of a double-dead-time model describing chugging to liquid propellant rocket engines having multielement injectors. Technical Note TN D-5303. NASA. [Google Scholar]
  14. Szuch, J. R. 1970. Digital computer program for analysis of chugging instabilities. Washington, D. C.: National Aeronautics and Space Administration. 76 p. [Google Scholar]
  15. Harrje, D. T., and F. H. Reardon. 1972. Liquid propellant rocket combustion instability. NASA Special Publication 194. [Google Scholar]
  16. Ordonneau, G., N. Girard, and N. David. 2000. Analysis and modeling of Vulcain engine shutdown transient chugging. Occe National d'etudes et de recherches aerospatiales ONERA-PUBLICATIONS-TP No. 143. [Google Scholar]
  17. Ordonneau, G., F. Levy, and N. Girard. 2001. Low frequency oscillation phenomena during VULCAIN shutdown transient. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Salt Lake City, UT. [Google Scholar]
  18. Fang, J. 1984. Application of combustion time-lag theory to combustion stability analysis of liquid and gaseous propellant rocket engines. 22nd AIAA Aerospace Sciences Meeting. Reno, NV. [Google Scholar]
  19. Sirignano, W. A., J. P. Deplanque, C. H. Chiang, and R. Bhatia. 1995. Liquid-propellant droplet vaporization: A rate-controlling process for combustion instability. Liquid rocket engine combustion instability. Eds. V. Yang and W. E. Anderson. Progress in astronautics and aeronautics ser. 169:307–343. doi:2514/5.9781600866371.0307.0343. [Google Scholar]
  20. Boronine, E., K. Vollmer, and M. Frey. 2013. A modified ESPSS combustion chamber model with chugging modeling capability. 2nd ESPSS Workshop, ESTEC. Noordwijk, The Netherlands. [Google Scholar]
  21. Vingert, L., P. Gicquel, M. Ledoux, I. Carré, M. Micci, and M. Glogowski. 2004. Atomization in coaxial-jet injectors. Liquid rocket combustion instability. Ed. V. Yang. Progress in astronautics and aeronautics ser. 200:105–140. [Google Scholar]
  22. Szuch, J. R., and L. M. Wenzel. 1967. Experimental verification of a double-deadtime model describing chugging in liquid-bipropellant rocket engines. NASA. Technical Report. [Google Scholar]
  23. Di Matteo, F. 2012. Modelling and simulations of liquid rocket engine ignition transients. University of Rome “La Sapienza.” PhD Thesis. [Google Scholar]
  24. Bruce Stewart, H., and B. Wendroff. 1984. Two-phase flow: Models and methods. J. Comput. Phys. 56(3):363–409. [Google Scholar]
  25. Ranz, W. E., and W. R. Marshall. 1952. Evaporation from drops. Chem. Eng. Prog. 48(3):141–146. [Google Scholar]
  26. Meng, H., G. C. Hsiao, V. Yang, and J. S. Shuen. 2005. Transport and dynamics of liquid oxygen droplets in supercritical hydrogen streams. J. Fluid Mech. 527:115–139. [Google Scholar]
  27. Yang, V. 2001. Liquid-propellant droplet combustion and cluster-behavior at supercritical conditions. DTIC Document. Technical Report. [Google Scholar]
  28. Lafon, P., H. Meng, V. Yang, and M. Habiballah. 2007. Vaporization of liquid oxygen (LOx) droplets in hydrogen and water environments under sub- and supercritical conditions. Combust. Sci. Technol. 180(1):1–26. [Google Scholar]
  29. Ferrenberg, A. J., and M. S. Varma. 1984. Atomization data requirements for rocket combustor modeling. 21st APL JANNAF Combust. Meeting. 1:369–377. [Google Scholar]
  30. Priem, R. J., and M. F. Heidmann. 1960. Propellant vaporization as a design criterion for rocket-engine combustion chambers. National Aeronautics and Space Administration. Vol. 67. [Google Scholar]
  31. Anon. 1962. J-2 Program Quarterly Progress Report for Period Ending February 28, 1962. Rocketdyne Div. North American Aviation. Technical Report No.R-2600-6(NASA CR-63323). P. 85, 137–140. [Google Scholar]