Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 317 - 346
DOI https://doi.org/10.1051/eucass/201911317
Published online 08 February 2019
  1. Knab, O., A. Fröhlich, J. Görgen, and D. Wiedmann. 2002. Advanced thrust chamber layout tools. 4th Conference (International) on Launcher Technology – Space Launcher Liquid Propulsion. Liege, Belgium. [Google Scholar]
  2. Knab, O., M. Frey, J. Görgen, C. Mäding, K. Quering, and D. Wiedmann. 2009. Progress in combustion and heat transfer modelling in rocket thrust chamber applied engineering. AIAA Paper No. 2009-5477. [Google Scholar]
  3. Marshall, W., S. Pal, R. Woodward, and R. Santoro. 2005. Benchmark wall heat flux data for a GO2/GH2 single element combustor. AIAA Paper No. 2005-3572. [Google Scholar]
  4. Habiballah, M., L. Vingert, J. Traineau, and P. Vuillermoz. 1996. Mascotte: A test bench for cryogenic combustion research. 47th Astronautical Congress (International). Beijing, China. [Google Scholar]
  5. Pal, S., W. Marshall, R. Woodward, and R. Santoro. 2006. Test case RCM 1: PennState preburner combustion!wall heat flux data for a GO2/GH2 uni-element combustor. 3rd Workshop (International) on Rocket Combustion Modeling Proceedings. Paris. [Google Scholar]
  6. Tucker, K., S. Menon, C. Merkle, J. Oefelein, and V. Yang. 2008. Validation of high fidelity CFD simulations for rocket injector design. AIAA Paper No. 2008-5226. [Google Scholar]
  7. Sozer, E., E. Hassan, S. Yun, S. Thakur, J. Wright, M. Ihme, and W. Shyy, 2010. Turbulence–chemistry interaction and heat transfer modeling of H2/O2 gaseaus injector flows. 48th AIAA Aerospace Sciences Meeting. Orlando, FL. [Google Scholar]
  8. Daimon, Y., H. Negishi, and N. Yamanishi. 2010. Combustion and heat transfer modeling in regeneratively cooled thrust chambers (Wall Heat Flux Validation). 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Nashville, TN. [Google Scholar]
  9. Lian, C., and C. Merkle. 2010. Contrast between steady and time-averadged unsteady combustion simulations. AIAA Paper No. 2010-371. [Google Scholar]
  10. Lempke, M., P. Gerlinger, M. Aigner, and M. Rachner. 2011. Steady and unsteady RANS simulations of cryogenic rocket combustors. AIAA Paper No. 2011-101. [Google Scholar]
  11. Ivancic, B., H. Riedmann, M. Frey, O. Knab, S. Karl, and K. Hannemann. 2016. Investigation of different modeling approaches for computational fluid dynamics simulation of high-pressure rocket combustors. Progress in propulsion physics. Eds. M. Calabro, L. DeLuca, S. Frolov, L. Galfetti, and O. Haidn. EUCASS advances in aerospace sciences book ser. TORUS PRESS –EDP Sciences. 8:95–116. [Google Scholar]
  12. Vingert, L., and M. Habiballah. 2001. Test case RCM-2: Mascotte single injector 10 bar. 2nd Workshop (International) on Rocket Combustion Modeling – Atomization, Combustion and Heat Transfer Proceedings. Lampolshausen. [Google Scholar]
  13. Candel, S., G. Herding, R. Snyder, P. Scouflaire, C. Rolon, L. Vingert, M. Habiballah, F. Grisch, M. Pealat, P. Bouchardy, D. Stepowski, A. Cessou, and P. Colin. 1998. Experimental investigation of shear coaxial cryogenic jet flames. J. Propul. Power 14(5):826–834. [Google Scholar]
  14. Grisch, F., P. Bouchardy, and W. Clauss. 2003. CARS thermometry in high pressure rocket combustors. Aerosp. Sci. Technol. 7(4):317–330. [Google Scholar]
  15. Nicole, A., G. Ordonneau, and M. Theron. 2009. 3D simulation of LOx/GH2 Mascotte test case at 10 bar. 3rd European Conference for Aeronautics and Space Sciences. Versailles, France. [Google Scholar]
  16. Izard, J., and A. Mura. 2011. Lagrangian modeling of turbulent spray combustion: Application to rocket engine cryogenic conditions. Progress in propulsion physics. Eds. L. DeLuca, C. Bonnal, O. Haidn, and S. Frolov. EUCASS advances in aerospace sciences book ser. TORUS PRESS –EDP Sciences. 2:207–224. [Google Scholar]
  17. Ivancic, B., H. Riedmann, and M. Frey. 2012. Validation of turbulent combustion models for 3D-simualtions of liquid H2/O2 rocket combustors. Space Propulsion Conference. Bordeaux, France. [Google Scholar]
  18. Riedmann, H., B. Kniesner, M. Frey, and C.-D. Munz. 2013. Numerical investigation of spray combustion and flow in LOx/H2 subscale rocket combustors. 5th European Conference for Aeronautics and Space Sciences. Munich, Germany. [Google Scholar]
  19. Farmer, R., R. Pike, and G. Cheng. 2005. CFD analyses in complex flows. Comput. Chem. Eng. 29(11-12):2386–2403. [Google Scholar]
  20. Riedmann, H., D. Banuti, B. Ivancic, O. Knab, and K. Hannemann. 2015. Modeling of H2/O2 single-element rocket thrust chamber combustion at sub- and supercritical pressures with different CFD tools. 6th European Conference for Aeronautics and Space Sciences. Krakow, Poland. [Google Scholar]
  21. Habiballah, M., and S. Zurbach. 2001. Test case RCM-3, Mascotte single injector. 2nd Workshop (International) on Rocket Combustion Modeling Proceedings. Lampoldshausen. [Google Scholar]
  22. Vingert, L., A. Nicole, and M. Habiballah. 2006. Test case RCM-2, Mascotte single injector. 3rd Workshop (International) on Combustion Modeling Proceedings. Paris. [Google Scholar]
  23. Poschner, M., and M. Pfitzner. 2008. Real gas CFD simulation of supercritical H2-LOx combustion in the Mascotte single-injector combustor using a comercial CFD code. AIAA Paper No. 2008-952. [Google Scholar]
  24. Schmitt, T., L. Selle, B. Cuenot, and T. Poinsot. 2009. Large-eddy simulation of transcritical flows. C. R. Acad. Sci. II B Mec. 337: 528–538. [Google Scholar]
  25. Banuti, D., and K. Hannemann. 2014. Application of a real-gas-library multi-fluid-mixing model to supercritical sinngle injector flow. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH. [Google Scholar]
  26. Riedmann, H., B. Kniesner, M. Frey, and C. D. Munz. 2014. 3D modeling of spray combustion and flow in a 40 kN H2/O2 subscale rcket trust camber. Space Propulsion Conference. Cologne, Germany. [Google Scholar]
  27. Frey, M., B. Kniesner, and O. Knab. 2011. Consideration of real gas Effects and condensation in a spray combustion rocket-thrust-chamber design tool. Progress in propulsion physics. Eds. L. DeLuca, C. Bonnal, O. Haidn, and S. Frolov. EUCASS advances in aerospace sciences book ser. TORUS PRESS – EDP Sciences. 2:285–296. [Google Scholar]
  28. Riedmann, H., B. Kniesner, M. Frey, and C.-D. Munz. 2014. Modeling of combustion and flow in a single element GH2/GO2 combustor. CEAS Space J. 6(1):47–59. doi:10.1007/s12567-013-0056-3. [Google Scholar]
  29. Knab, O., and D. Preclik. 2006. RCM test-case RCM-3: .EADS-ST subscale chamber.\ 3rd Workshop (International) Rocket Combustion Modeling Proceedings. Paris. [Google Scholar]
  30. Frey, M., T. Aichner, B. Ivancic, B. Kniesner, and O. Knab. 2010. Modeling of rocket combustion devices. 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Chicago, IL. [Google Scholar]
  31. Masquelet, M. 2006. Simulations of a sub-scale liquid rocket engine: Transient heat transfer in a real gas environment. Atlanta, GA: Georgia Institute of Technology. Master Thesis. [Google Scholar]
  32. Masquelet, M., S. Menon, Y. Jin, and R. Friedrich. 2009. Simulation of unsteady combustion in a LOx–GH2 fueled rocket engine. Aerosp. Sci. Technol. 13:466–474. [Google Scholar]
  33. Kniesner, B., M. Frey, und O. Knab. 2013. Consideration of wall roughness Effects in the prediction of heat transfer in rocket combustion chambers. 5th European Conference for Aeronautics and Space Sciences. Munich, Germany. [Google Scholar]
  34. Aichner, T., H. Riedmann, B. Kniesner, and O. Knab. 2012. Development of an advanced global MMH–NTO combustion model for CFD application. Space Propulsion Conference. Bordeaux, France. [Google Scholar]