Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 225 - 246
DOI https://doi.org/10.1051/eucass/201911225
Published online 08 February 2019
  1. Hardi, J., M. Oschwald, and B. Dally. 2011. Flame response to acoustic excitation in a rectangular rocket combustor with LOx/H2 propellants. CEAS Space J. 2:41–49. [Google Scholar]
  2. Hardi, J. S. 2012. Experimental investigation of high frequency combustion instability in cryogenic oxygen–hydrogen rocket engines. The University of Adelaide. Ph. D. Thesis. [Google Scholar]
  3. Hardi, J. S., S. K. Beinke, M. Oschwald, and B. B. Dally. 2014. Coupling of cryogenic oxygen–hydrogen flames to longitudinal and transverse acoustic instabilities. J. Propul. Power 30:991–1004. [Google Scholar]
  4. Hardi, J. S., M. Oschwald, and B. Dally. 2012. Acoustic characterisation of a rectangular rocket combustor with liquid oxygen and hydrogen propellants. P. I. Mech. Eng. G — J. Aer. 227(3):436–446. [Google Scholar]
  5. Hardi, J., H. Gomez Martinez, and M. Oschwald. 2014. LOx jet atomization under transverse acoustic oscillations. J. Propul. Power 30(2):337–349. [Google Scholar]
  6. Schmid, P. J. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28. doi: 10.1017/S0022112010001217. [Google Scholar]
  7. Wierman, M., B. Pomeroy, and W. Anderson. 2013. Development of combustor response functions in a subscale high pressure transverse combustor. 5th European Conference for Aeronautics and Space Sciences (EUCASS). [Google Scholar]
  8. Hardi, J., W. Hallum, C. Huang, and W. Anderson. 2014. Development of validation approaches for numerical simulation of combustion instability using flame imaging. AIAA Paper No. 2014-3775. [Google Scholar]
  9. Banuti, D. 2014. Thermodynamic analysis and numerical modeling of supercritical injection. University of Stuttgart. Ph. D. Thesis. [Google Scholar]
  10. Banuti, D. T., V. Hannemann, K. Hannemann, and B. Weigand. 2016. An eccient multi-fluid-mixing model for real gas reacting flows in liquid propellant rocket engines. Combust. Flame 168:98–112. [Google Scholar]
  11. Gerhold, T., V. Hannemann, and D. Schwamborn. 1999. On the validation of the DLR-TAU code. New results in numerical and experimental fluid mechanics. Notes on numerical fluid mechanics ser. 72:426–433. [Google Scholar]
  12. Karl, S. 2011. Numerical investigation of a generic scramjet configuration. Technische Universität Dresden. Ph. D. Thesis. [Google Scholar]
  13. Younglove, B. A. 1982. Thermophysical properties of fluids. 1. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen. J. Phys. Chem. Ref. Data 11(Suppl. 1). 353 p. [Google Scholar]
  14. Lemmon, E., and R. Jacobsen. 2004. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 25(1):21–69. [Google Scholar]
  15. Spalart, P., and S. R. Allmaras. 1992. A one-equation turbulence model for aerodynamic flows. AIAA Paper No. 92-0439. [Google Scholar]
  16. Bardina, J. E., P. G. Huang, and T. J. Coakley. 1997. Turbulence modeling validation, testing, and development. NASA. Technical Report 19970017828. [Google Scholar]
  17. Wilcox, D. C. 2006. Turbulence modelling for CFD. 3rd ed. DCW Industries. 522 p. [Google Scholar]
  18. Jachimowski, C. J. 1988. An analytical study of the hydrogen–air reaction mechanism with application to scramjet combustion. Hampton, VA: NASA Langley Research Center. Technical Paper 2791. [Google Scholar]
  19. Lempke, M., P. Gerlinger, and M. Aigner. 2013. Assumed PDF modeling in rocket combustor simulations. Progress in propulsion physics. Eds. L. T. DeLuca, Ch. Bonnal, O. Haidn, and S. M. Frolov. EUCASS advances in aerospace sciences book ser. TORUS PRESS – EDP Sciences. 4:569–582. [Google Scholar]
  20. Ivancic, B., H. Riedmann, M. Frey, O. Knab, S. Karl, and K. Hannemann. 2013. Investigation of different modeling approaches for CFD simulation of high pressure rocket combustors. 5th EUCASS. Munich. [Google Scholar]
  21. Gröning, S., J. S. Hardi, D. Suslov, and M. Oschwald. 2016. Injector-driven combustion instabilities in a hydrogen/oxygen rocket combustor. J. Propul. Power 32:560–573. [Google Scholar]
  22. Hakim, L., A. Ruiz, T. Schmitt, M. Boileau, G. Staffelbach, S. Ducruix, B. Cuenot, and S. Candel. 2015. Large eddy simulations of multiple transcritical coaxial flames submitted to a high-frequency transverse acoustic modulation. Proc. Combust. Inst. 35(2):1461–1468. [Google Scholar]
  23. Shipley, K., W. Anderson, M. Harvazinski, and V. Sankaran. 2014. A computational study of transverse combustion instability mechanisms. 50th AIAA Joint Propulsion Conference. Cleveland, OH. [Google Scholar]
  24. Schmid, M. 2014. Thermoakustische kopplungsmechanismen in flüssigkeitsraket-entriebwerken. Technical University of Munich. Ph. D. Thesis. [Google Scholar]