Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 247 - 272
DOI https://doi.org/10.1051/eucass/201911247
Published online 08 February 2019
  1. Haidn, O. J., ed. 2001. 2nd Workshop (International) on Rocket Combustion Modeling, Atomization, Combustion and Heat Transfer Proceedings. DLR Lampold-shausen, Germany. [Google Scholar]
  2. Ivancic, B., H. Riedmann, M. Frey, O. Knab, S. Karl, and K. Hannemann. 2016. Investigation of different modeling approaches for computational fluid dynamics simulation of high-pressure rocket combustors. Progress in propulsion physics. Eds. M. Calabro, L. DeLuca, S. Frolov, L. Galfetti, and O. Haidn. EUCASS advances in aerospace sciences book ser. TORUS PRESS –EDP Sciences. 8:95–116. [Google Scholar]
  3. Knab, O., H. Riedmann, B. Ivancic, C. Höglauer, M. Frey, and T. Aichner. 2015, Consequences of modeling demands on numerical rocket thrust chamber flow simulation tools. Progress in propulsion physics. Eds. M. Calabro, L. DeLuca, S. Frolov, L. Galfetti, and O. Haidn. EUCASS advances in aerospace sciences book ser. TORUS PRESS –EDP Sciences. 11:317–346. [Google Scholar]
  4. Vingert, L., and M. Habiballah. 2001. Presentation of test case RCM-2: Cryogenic spray combustion at 10 bar at MASCOTTE. 2nd Workshop (International) on Rocket Combustion Modeling — Atomization, Combustion and Heat Transfer Proceedings. Lampolshausen, Germany. [Google Scholar]
  5. Candel, S., G. Herding, R. Snyder, P. Scouflaire, C. Rolon, L. Vingert, M. Habiballah, F. Grisch, M. Pealat, P. Bouchardy, D. Stepowski, A. Cessou, and P. Colin. 1998. Experimental investigation of shear coaxial cryogenic jet flames. J. Propul. Power 14(5):826–834. [Google Scholar]
  6. Grisch, F., P. Bouchardy, and W. Clauss. 2003. CARS thermometry in high pressure rocket combustors. Aerosp. Sci. Technol. 7(4):317–330. [Google Scholar]
  7. Fiala, T., and T. Sattelmayer. 2013. A posteriori computation of OH* radiation from numerical simulations in rocket combustion chambers. 5th European Conference for Aeronautics and Space Sciences. Munich, Germany. [Google Scholar]
  8. Thomas, J. L., and S. Zurbach. 2001. Presentation of test case RCM-3: Supercritical spray combustion at 60 bar at MASCOTTE. 2nd Workshop (International) on Rocket Combustion Modeling — Atomization, Combustion and Heat Transfer Proceedings. Lampoldshausen, Germany. [Google Scholar]
  9. Cheng, G., and R. Farmer. 2002. CFD spray combustion model for liquid rocket engine injector analyses. 40th AIAA Aerospace Sciences Meeting and Exhibit. [Google Scholar]
  10. Habiballah, M., M. Orain, F. Grisch, L. Vingert, and P. Gicquel. 2006. Experimental studies of high-pressure crygenic flames on the MASCOTTE facility. Combust. Sci. Technol. 178(1-3):101–128. [Google Scholar]
  11. Poschner, M. M., and M. Pfitzner. 2008. Real gas CFD simulation of supercritical H2–LOx combustion in the Mascotte single-injector combustor using a commercial CFD code. 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV. [Google Scholar]
  12. Patankar, S. V., and D. B. Spalding. 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Tran. 15(10):1787–1806. [Google Scholar]
  13. Jones, W. P., and B. E. Launder. 1972. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Tran. 15:301–314. [Google Scholar]
  14. Kniesner, B., M. Frey, and O. Knab. 2011. Numerical investigation of gas generator and preburner flows for rocket engine applications. EUCASS. St. Petersburg, Russia. [Google Scholar]
  15. Abramzon, B., and W. A. Sirignano. 1988. Droplet vaporization model for spray combustion calculations. AIAA 26th Aerospace Sciences Meeting. Reno, NV. [Google Scholar]
  16. Riedmann, H., B. Kniesner, M. Frey, and C.-D. Munz. 2014. 3D modeling of spray combustion and flow in a 40 kN H2/O2 subscale rocket thrust chamber. Space Propulsion Conference. Cologne, Germany. [Google Scholar]
  17. Gerhold, T. 2005. Overview of the hybrid RANS code TAU MEGAFLOW — numerical flow simulation for aircraft design. Notes on numerical fluid mechanics and multidisciplinary design. Springer. 89:81–92. [Google Scholar]
  18. Schwamborn, D., T. Gerhold, and R. Heinrich. 2006. The DLR TAU-code: Recent applications in research and industry. European Conference in Computational Fluid Dynamics. Egmond an Zee, Netherlands. [Google Scholar]
  19. Spallart, P. R., and S. R. Allmaras. 1992. A one-equation turbulence model for aerodynamic flows. AIAA Paper No. 92-0439. [Google Scholar]
  20. Jachimowski, C.. 1988. An analytical study of the hydrogen–air reaction mechanism with application to scramjet combustion. NASA Technical Paper No. 2791. [Google Scholar]
  21. Lempke, M., P. Gerlinger, and M. Aigner. 2013. Assumed PDF modeling in rocket combustor simulations. Progress in propulsion physics. Eds. L. T. DeLuca, C. Bonnal, O. Haidn, and S. M. Frolov. EUCASS advances in aerospace sciences book ser. TORUS PRESS –EDP Sciences. 4:569–582. [Google Scholar]
  22. Lacaze, G., and J. C. Oefelein. 2012. A non-premixed combustion model based on flame structure analysis at supercritical pressures. Combust. Flame 159:2087–2103. [Google Scholar]
  23. Baniti, D. T., M. Raju, P. C. Ma, M. Ihme, and J.-P. Hickey. 2017. Seven questions about supercritical fluids — towards a new fluid state diagram. AIAA Paper No. 2017-1106. [Google Scholar]
  24. Mayer, W., and H. Tamura. 1996. Propellant injection in a liquid oxygen / gaseous hydrogen rocket engine. J. Propul. Power 12(6):1137–1147. [Google Scholar]
  25. Younglove, B. A. 1982. Thermophysical properties of fluids. I. Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen. J. Phys. Chem. Ref. Data 11(suppl. 1). 356 p. [Google Scholar]
  26. Lemmon, E. W., and R. T. Jacobsen. 2004. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. J. Thermophys. 21–69. [Google Scholar]
  27. Banuti, D. T., and K. Hannemann. 2014. Eccient multiphase rocket propellant injection model with high quality equation of state. 4th Space Propulsion Conference Proceedings. Cologne, Germany. [Google Scholar]
  28. Banuti, D. T., and K. Hannemann. 2014. Application of a real-gas-library multi-fluid-mixing model to supercritical single injector flow. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Proceedings. Cleveland, OH. [Google Scholar]
  29. Banuti, D. T., V. Hannemann, K. Hannemann, and B. Weigand. 2016. An eccient multi-fluid-mixing model for real gas reacting flows in liquid propellant rocket emgines. Combust. Flame 168:98–112. [Google Scholar]
  30. Menter, F., J. Carregal Ferreira, T. Esch, and B. Konno. 2003. The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. Gas Turbine Congress (International) Proceedings. Tokyo, Japan. [Google Scholar]
  31. Ivancic, B., M. Frey, and O. Knab. 2010. 3D-numerical investigation of turbulent combustion and heat transfer processes in H2–O2 liquid rocket combustors. Space Propulsion Conference. San Sebastian, Spain. [Google Scholar]
  32. McBride, B. J., and S. Gordon. 1996. Computer program for calculation of complex chemical equilibrium compositions and applications. Cleveland, OH. NASA Reference Publication 1311. [Google Scholar]