Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 195 - 224
DOI https://doi.org/10.1051/eucass/201911195
Published online 08 February 2019
  1. Refloch, A., B. Courbet, A. Murrone, et al. 2011. CEDRE software. J. Aerospace-Lab 2. 10 p. [Google Scholar]
  2. Ishii, M. 1975. Thermo-fluid dynamic theory of two-phase flow. Paris, Eyrolles: Direction des études et recherches d'électricité de France. Vol. 22. [Google Scholar]
  3. Vallet, A., A. Burluka, and R. Borghi. 2001. Development of a Eulerian model for the atomization of a liquid jet. Atomization Spray. 11:619–642. [Google Scholar]
  4. Lebas, R., T. Menard, P. A. Beau, A. Berlemont, and F. X. Demoulin. 2009. Numerical simulation of primary break-up and atomization: DNS and modelling study. Int. J. Multiphas. Flow 35:247–260. [Google Scholar]
  5. Vallet, A. 1997. Contribution à la Modélisation de l'Atomisation d'un Jet Liquide Haute Pression. Université de Rouen. Thèse de doct. [Google Scholar]
  6. Vallet, A., and R. Borghi. 1999. Modélisation eulerienne de l'atomisation d'un jet liquide. CR Acad. Sci. II B 327(10):1015–1020. [NASA ADS] [Google Scholar]
  7. Pourouchottamane, M. 2002. Modélisation des brouillards denses pour la combustion cryotechnique. Université d'Aix-Marseille II. Thèse de doct. [Google Scholar]
  8. Meyers, N. 2006. Modélisation de la combustion cryotechnique avec prise en compte de l'atomisation primaire du jet d'oxygène liquide. Université d'Aix-Marseille II. Thèse de doct. [Google Scholar]
  9. Demoulin, F.-X., P.-A. Beau, G. Blokkeel, A. Mura, and R. Borghi. 2007. A new model for turbulent flows with large density fluctuations: Application to liquid atomization. Atomization Spray. 17(4):315–345. [Google Scholar]
  10. Jay, S. 2003. Modélisation de la combustion diphasique au moyen de bilans d'aire interfaciale et de surface de flamme. Application à la combustion cryotechnique. Ecole Centrale Paris. Thèse de doct. [Google Scholar]
  11. Jay, S., F. Lacas, and S. Candel. 2006. Combined surface density concepts for dense spray combustion. Combust. Flame 144(3):558–577. [Google Scholar]
  12. Beau, P. A. 2006. Modélisation de l'atomisation d'un jet liquide. Application aux sprays Diesel. Université de Rouen. Thèse de doct. [Google Scholar]
  13. Lebas, R. 2007. Modélisation Eulérienne de l'atomisation haute pression — influences sur la vaporisation et la combustion induite. Université de Rouen. Thèse de doct. [Google Scholar]
  14. Demoulin, F.-X., J. Reveillon, B. Duret, Z. Bouali, P. Desjonqueres, and T. Menard. 2013. Toward using direct numerical simulation to improve primary break-up modeling. Atomization Spray. 23(11):957–980. [Google Scholar]
  15. Chesnel, J., T. Menard, J. Reveillon, and F.-X. Demoulin. 2011. Subgrid analysis of liquid jet atomization. Atomization Spray. 21(1):41–67. [Google Scholar]
  16. Chesnel, J., J. Reveillon, T. Menard, and F.-X. Demoulin. 2011. Large eddy simulation of liquid jet atomization. Atomization Spray. 21(9):711–736. [Google Scholar]
  17. Chesnel, J. 2010. Simulation aux grandes échelles de l'atomisation. Application à l'injection automobile. Université de Rouen. Thèse de doct. [Google Scholar]
  18. Baer, M. R., and J. W. Nunziato. 1986. A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphas. Flow 12:861–889. [Google Scholar]
  19. Williams, F. A. 1985. Combustion theory. Combustion science and engineering ser. Reading, MA: Addison-Wesley. 699 p. [Google Scholar]
  20. Le Touze, C., A. Murrone, and H. Guillard. 2015. Multislope MUSCL method for general unstructured meshes. J. Comput. Phys. 284:389–418. [NASA ADS] [CrossRef] [Google Scholar]
  21. Le Touze, C., A. Murrone, E. Montreuil, and H. Guillard. 2012. Eulerian numerical methods on unstructured meshes for the Large Eddy Simulation of sprays within liquid rocket engines. ECCOMAS Proceedings. Vienna, Austria. [Google Scholar]
  22. Le Touze, C., A. Murrone, and E. Montreuil. 2013. Numerical coupling strategies for the “separated-to-dispersed” transition within the liquid phase of cryogenic rocket engines. 5th European Conference for Aeronautics and Space Science. Munich, Germany. [Google Scholar]
  23. Murrone, A., N. Fdida, C. Le Touze, and L. Vingert. 2014. Atomization of cryogenic rocket engines coaxial injectors. Modeling aspects and experimental investigations. Space propulsion. Cologne, Germany. [Google Scholar]
  24. Vingert, L., M. Habiballah, and J. C. Traineau. 1999. MASCOTTE: A research facility for high pressure combustion of cryogenic propellants. 12th European Aerospace Conference. Paris. [Google Scholar]
  25. Gicquel, P., E. Porcheron, and E. Brisson. 1998. Caractérisation expérimentale en combustion d'un brouillard LOX-GH2 issu d'un injecteur coaxial (campagne d'essais 1997 à 1 MPa). ONERA RT 98/6128 DEFA/Y/DMTE. [Google Scholar]
  26. Vingert, L. 2006. Sélection de cas tests Mascotte: – cas subcritique LOx/GH2 10 bar. – cas supercritique LOx/GH2 60 bar. Rapport technique RT 1/11785. ONERA. [Google Scholar]
  27. Murrone, A., and H. Guillard. 2004. A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202:664–698. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  28. Magnussen, B., and B. Hjertager. 1977. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (International) on Combustion 16(1):719–729. [Google Scholar]
  29. Boris, J. P., F. F. Grinstein, E. S. Oran, and R. J. Kolbe. 1992. New insights into large eddy simulation. Fluid Dyn. Res. 10(4-6):199–227. [NASA ADS] [CrossRef] [Google Scholar]
  30. Fureby, C., and F. F. Grinstein. 1999. Monotonically integrated large eddy simulation of free shear layer flows. AIAA J. 37(5):544–556. [NASA ADS] [CrossRef] [Google Scholar]
  31. Murrone, A., and P. Villedieu. 2011. Numerical modeling of dispersed two-phase flows. J. AerospaceLab 2. AL02-04. 13 p. [Google Scholar]
  32. Spalding, D. B. 1953. The combustion of liquid fuels. 4th Symposium (International) on Combustion Proceedings. Baltimore, MD: The Combustion Institute. 847–864. [Google Scholar]
  33. Abramzon, B., and W. A. Sirignano. 1989. Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Tran. 32:160–168. [Google Scholar]
  34. O'Rourke, P. J., and A. Amsden. 1987. The TAB method for numerical calculation of spray droplet breakup. Los Alamos, NM: Los Alamos National Laboratory. Technical Report 87545. [Google Scholar]
  35. Wert, K. L. 1995. A rationally-based correlation of mean fragment size for drop secondary breakup. Int. J. Multiphas. Flow 21(6):1063–1071. [Google Scholar]
  36. Marmottant, P., and E. Villermaux. 2004. On spray formation. J. Fluid Mech. 498:73–112. [NASA ADS] [CrossRef] [Google Scholar]