Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 177 - 194
DOI https://doi.org/10.1051/eucass/201911177
Published online 08 February 2019
  1. Mayer, W., and H. Tamura. 1996. Propellant injection in a liquid oxygen / gaseous hydrogen rocket engine. J. Propul. Power 12(6):1137–1147. [Google Scholar]
  2. Mayer, W., A. Schik, B. Vielle, C. Chaveau, I. Gökalp, and D. Talley. 1998. Atomization and breakup of cryogenic propellants under high pressure subcritical and supercritical conditions. J. Propul. Power 14(5):835–842. [Google Scholar]
  3. Oschwald, M., J. J. Smith, R. Branam, J. Hussong, A. Schik, B. Chehroudi, and D. Talley. 2006. Injection of fluids into supercritical environments. Combust. Sci. Technol. 178(1-3):49–100. [Google Scholar]
  4. Chehroudi, B. 2012. Recent experimental efforts on high-pressure supercritical injection for liquid rockets and their implications. Int. J. Aerospace Eng. 2012:121802. 31 p. [Google Scholar]
  5. Habiballah, M., M. Orain, F. Grisch, L. Vingert, and P. Gicquel. 2006. Experimental studies of high-pressure cryogenic flames on the Mascotte facility. Combust. Sci. Technol. 178(1-3):101–128. [Google Scholar]
  6. Oefelein, J. C., and V. Yang. 1998. Modeling high-pressure mixing and combustion processes in liquid rocket engines. J. Propul. Power 14(5):843–857. [Google Scholar]
  7. Zong, N., H. Meng, S.-Y. Hsieh, and V. Yang. 2004. A numerical study of cryogenic fluid injection and mixing under supercritical conditions. Phys. Fluids 16(12):4248–4261. [Google Scholar]
  8. Oefelein, J. C. 2006. Mixing and combustion of cryogenic oxygen–hydrogen shearcoaxial jet flames at supercritical pressure. Combust. Sci. Technol. 178:229–252. [Google Scholar]
  9. Matheis, J., H. Müller, C. Lenz, M. Pfitzner, and S. Hickel. 2016. Volume translation methods for real-gas computational fluid dynamics simulations. J. Supercrit. Fluid. 107:422–432. [Google Scholar]
  10. Harstad, K. G., R. S. Miller, and J. Bellan. 1997. Eccient high-pressure state equations. AIChE J. 43(6):1605–1610. [Google Scholar]
  11. Frey, K., M. Modell, and J. W. Tester. 2009. Density-and-temperature-dependent volume translation for the SRK EOS: 1. Pure fluid. Fluid Phase Equilibria 279:56–63. [Google Scholar]
  12. Peng, D.-Y., and D. B. Robinson. 1976. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15:59–54. [Google Scholar]
  13. Soave, G. 1972. Equilibrium constants from a modified Redlich-Kwong equation of state. Chemical Engineering Sci. 27:1197–1203. [Google Scholar]
  14. Abudour, A. M., S. A. Mohammad, R. L. Robinson, Jr., and K. A. M. Gasem. 2013. Volume-translated Peng–Robinson equation of stat for liquid densities of diverse binary mixtures. Fluid Phase Equilib. 349:37–55. [Google Scholar]
  15. Chou, G. F., and J. M. Prausnitz. 1989. A phenomenological correction to an equation of state for the critical region. AIChE J. 35(9):1487–1496. [Google Scholar]
  16. Müller, H., C. A. Niedermeier, J. Matheis, M. Pfitzner, and S. Hickel. 2016. Largeeddy simulation of nitrogen injection at trans- and supercritical conditions. Phys. Fluids 28(1):15102. [Google Scholar]
  17. Müller, H., M. Pfitzner, J. Matheis, S. Hickel, M. Pfitzner, and S. Hickel. 2016. Large-eddy simulation of coaxial LN2/GH2 injection at trans- and supercritical conditions. J. Propul. Power 32(1):46–56. [Google Scholar]
  18. Singla, G., P. Scouflaire, C. Rolon, and S. Candel. 2005. Transcritical oxygen/transcritical or supercritical methane combustion. Proc. Combust. Inst. 30:2921–2928. [Google Scholar]
  19. Guezennec, N., M. Masquelet, and S. Menon. 2012. Large eddy simulation of flame–turbulence interactions in a LOx–CH4 shear coaxial injector. AIAA Paper No. 2012-1267. [Google Scholar]
  20. Schmitt, T., Y. Méery, M. Boileau, and S. Candel. 2011. Large-eddy simulation of oxygen/methane flames under transcritical conditions. Proc. Combust. Inst. 33(1):1383–1390. [Google Scholar]
  21. Cutrone, L., P. De Palma, G. Pascazio, and M. Napolitano. 2010. A RANS flameletprogress-variable method for computing reacting flows of real-gas mixtures. Comput. Fluids 39(3):485–498. [Google Scholar]
  22. Kim, T., Y. Kim, and S. K. Kim. 2013. Effects of pressure and inlet temperature on coaxial gaseous methane/liquid oxygen turbulent jet flame under transcritical conditions. J. Supercrit. Fluid. 81:164–174. [Google Scholar]
  23. Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energ. Combust. Sci. 10(3):319–339. [Google Scholar]
  24. Peters, N. 2000. Turbulent combustion. Cambridge University Press. 304 p. [Google Scholar]
  25. Zong, N., G. Ribert, and V. Yang. 2008. A flamelet approach for modeling of liquid oxygen LOx/methane flames at supercritical pressures. AIAA Paper No. 2008-946. [Google Scholar]
  26. Ribert, G., N. Zong, V. Yang, L. Pons, N. Darabiha, and S. Candel. 2008. Counter-flow diffusion flames of general fluids: Oxygen/hydrogen mixtures. Combust. Flame 154(3):319–330. [Google Scholar]
  27. Garnier, E., N. Adams, and P. Sagaut. 2009. Large eddy simulation for compressible flows. Scientific computation ser. Springer Netherlands. 285 p. [Google Scholar]
  28. Kemenov, K. A., H. Wang, and S. B. Pope. 2012. Modelling effects of subgrid-scale mixture fraction variance in LES of a piloted diffusion flame. Combust. Theor. Model. 16(4):611–638. [Google Scholar]
  29. Vreman, A. W. 2004. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 16(10):3670ߝ3681. [Google Scholar]
  30. Issa, R. I. 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 93(2):40ߝ65. [Google Scholar]
  31. Issa, R. I., B. Ahmadi-Befrui, K. R. Beshay, A. D. Gosman, and A. Grosman. 1991. Solution of the implicitly discretised reacting flow equations by operator-splitting. J. Comput. Phys. 93(2):388ߝ410. [Google Scholar]
  32. Jarczyk, M., and M. Pfitzner, 2012. Large eddy simulation of supercritical nitrogen jets. AIAA Paper No. 2012-1270. [Google Scholar]
  33. Goos, E., A. Burcat, and B. Ruscic. 2009. Extended third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Available at: http://burcat.technion.ac.il/dir (accessed August 24, 2017). [Google Scholar]
  34. Poling, B. E., J. M. Prausnitz, and J. P. O'Connell. 2001. The properties of gases and liquids. 5th ed. McGraw-Hill Co. 706 p. [Google Scholar]
  35. Chung, T.-H., M. Ajlan, L. L. Lee, and K. E. Starling. 1988. Generalized multiparameter correlation for nonpolar and polar fluid transport properties. Ind. Eng. Chem. Res. 27(4):671–679. [Google Scholar]
  36. National Institute of Standards and Technology. 2017. Thermophysical properties of fluid systems. Available at: http://webbook.nist.gov/chemistry/fluid/ (accessed August 24, 2017). [Google Scholar]
  37. Pons, L., N. Darabiha, and S. Candel. 2008. Pressure Effects on nonpremixed strained flame. Combust. Flame 152(1-2):218–229. [Google Scholar]
  38. Lacaze, G., and J. C. Oefelein. 2012. A non-premixed combustion model based on flame structure analysis at supercritical pressures. Combust. Flame 159(6):2087–2103. [Google Scholar]
  39. Jones, W. P., and R. P. Lindstedt. 1988. Global reaction schemes for hydrocarbon combustion. Combust. Flame 73(3):233–249. [Google Scholar]
  40. Frassoldati, A., A. Cuoci, T. Faravelli, E. Ranzi, C. Candusso, and D. Tolazzi. 2009. Simplified kinetic schemes for oxy-fuel combustion. 1st Conference (International) on Sustainable Fossil Fuels for Future Energy. 6–10. [Google Scholar]
  41. Pitsch, H. 2016. Flamemaster. Available at: http://www.itv.rwth-aachen.de/downloads/flamemaster/ (accessed August 24, 2017). [Google Scholar]
  42. Pohl, S., M. Jarczyk, M. Pfitzner, and B. Rogg. 2013. Real gas CFD simulations of hydrogen/oxygen supercritical combustion. Progress in propulsion physics. Eds. L. T. DeLuca, C. Bonnal, O. Haidn, and S. M. Frolov. EUCASS advances in aerospace sciences book ser. TORUS PRESS –EDP Sciences. 4:583–614. [Google Scholar]
  43. Kim, T., Y. Kim, and S.-K. Kim. 2011. Real-fluid flamelet modeling for gaseous hydrogen/cryogenic liquid oxygen jet flames at supercritical pressure. J. Supercrit. Fluids 58(2):254–262. [Google Scholar]
  44. Smith, G. P., D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, and Z. Qin. GRI-Mech. Available at: http://www.me.berkeley.edu/grimech/ (accessed August 24, 2017). [Google Scholar]
  45. Candel, S., G. Herding, R. Snyder, P. Scouflaire, C. Rolon, L. Vingert, M. Habiballah, F. Grisch, M. Péalat, P. Bouchardy, D. Stepowski, A. Cessou, and P. Colin. 1998. Experimental investigation of shear coaxial cryogenic jet flames. J. Propul. Power 14(5):826–834. [Google Scholar]
  46. Kawai, S., S. K. Shankar, and S. K. Lele. 2010. Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229(5):1739–1762. [Google Scholar]
  47. Fiala, T., and T. Sattelmayer. 2013. A posteriori computation of OH* radiation from numerical simulations in rocket combustion chambers. 5th European Conference for Aeronautics and Space Sciences (EUCASS). [Google Scholar]