Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 131 - 148
DOI https://doi.org/10.1051/eucass/201911131
Published online 08 February 2019
  1. Babuk, V. A., V. A. Vasilyev, and P. A. Naslednikov. 2001. Experimental study of evolution of condensed combustion products in gas phase of burning solid rocket propellant. Combustion of energetic materials. Eds. K. Kuo and L. De Luca. New York, NY. 412–426. [Google Scholar]
  2. Babuk, V. A., V. A. Vasilyev, and M. S. Malakhov. 1999. Condensed combustion products at the burning surface of aluminized solid propellant. J. Propul. Power 15:783–793. [Google Scholar]
  3. Babuk, V. A. 2007. Problems in studying formation of smoke oxide particles in combustion of aluminized solid propellants. Combust. Explo. Shock Waves 43:38–45. [Google Scholar]
  4. Babuk, V. A., and V. A. Vasilyev. 2002. Model of aluminum agglomerate evolution in combustion products of solid rocket propellant. J. Propul. Power 18:814–824. [Google Scholar]
  5. Orlandi, O., S. Gallier, Y. Moonsamy, and N. Ceso. 2013. Numerical simulation of a single aluminum droplet burning in a propellant environment. 5th European Conference for Aerospace Sciences Proceedings. Munich, Germany. [Google Scholar]
  6. Liang, Y., M. W. Beckstead, and K. Pudduppakkam. 1999. Numerical simulation of unsteady single aluminum particle combustion. 36th JANNAF Combustion Meeting. CPIA No. 691. 1:283–309. [Google Scholar]
  7. Gremyachkin, V. M., A. G. Istratov, and O. I. Leipunskii. 1974. Formation of condensed oxide particles by combustion of metal droplets. J. Appl. Mech. Tech. Phys. 15:494–499. [NASA ADS] [CrossRef] [Google Scholar]
  8. Gremyachkin, V. M., A. G. Istratov, and O. I. Leipunskii. 1975. Model for the combustion of metal droplets. Combust. Explo. Shock Waves 11:313–318. [Google Scholar]
  9. Salita, M. 1995. Deficiencies and requirements in modeling of slag generation in solid rocket motors. J. Propul. Power 1:10–23. [Google Scholar]
  10. Dupays, J., Y. Fabignon, P. Villedieu, G. Lavergne, and J. L. Estivalezes. 2000. Some aspects of two-phase flows in solid-propellant rocket motors. Solid propellant chemistry, combustion and motor interior ballistics. Eds. V. Yang, T. B. Brill, and W. Z. Ren. Progress in astronautics and aeronautics ser. Reston: AIAA. 185: 859–883. [Google Scholar]
  11. Jackson, T. L., F. Najjar, and J. Buckmaster. 2005. New aluminum agglomeration models and their use in solid-propellant-rocket simulations. J. Propul. Power 5:925–936. [Google Scholar]
  12. Attili, A., B. Favini, M. Di Giacinto, and F. Seraglia. 2009. Numerical simulation of multiphase flows in solid rocket motors. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver, CO. [Google Scholar]
  13. Maggi, F., S. Dossi, and L. T. DeLuca. 2013. Combustion of metal agglomerates in a solid rocket core flow. Acta Astronaut. 2:163–174. [NASA ADS] [CrossRef] [Google Scholar]
  14. Abramovich, G. N., S. Yu. Krasheninnikov, A. N. Sekundov, and I. P. Smirnova. 1974. Turbulentnoe smeshenie gazovykh struy [Turbulent mixing of gas jets]. Moscow: Nauka. 272 p. [Google Scholar]
  15. Abramovich, G. N., T. A. Girshovich, S. Yu. Krasheninnikov, A. N. Sekundov, and I. P. Smirnova. 1984. Teoriya turbulentnukh struy [The theory of turbulent jets]. Moscow: Nauka. 716 p. [Google Scholar]
  16. Sternin, L. E., and A. A. Shraiber. 1994. Mnogofaznye techeniya gaza s chastitsami [Multiphase flows of gas with particles]. Moscow: Mashinostroenie. 320 p. [Google Scholar]