Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 91 - 130
DOI https://doi.org/10.1051/eucass/201911091
Published online 08 February 2019
  1. Natan, B., and S. Rahimi. 2002. The status of gel propellants in year 2000. Combustion of energetic materials. Eds. K. K. Kuo and L. T. DeLuca. Begell House, USA. 172–194. [Google Scholar]
  2. Ciezki, H. K., K. W. Naumann, and V. Weiser. 2010. Status of gel propulsion in the year 2010 with a special view on German activities. Deutscher Luft- und Raumfahrtkongress 2010. Hamburg, Germany. [Google Scholar]
  3. Sackheim, R. L., and R. K. Masse. 2014. Green propulsion advancement: Challenging the maturity of monopropellant hydrazine. J. Propul. Power 30(2):265–276. [Google Scholar]
  4. Schmid, K., J. Ramsel, K. W. Naumann, R. Stierle, and V. Weiser. 2012. Raketenmotore mit Gel-Treibstoffen—Stand der Technologie bei Bayern-Chemie. Deutscher Luft- und Raumfahrtkongress 2012. Berlin, Germany. [Google Scholar]
  5. Madlener, K., and H. K. Ciezki. 2009. Some aspects of rheological and flow characteristics of gel propellants with regard to propulsion application. AIAA Paper No. 2009-5240. [Google Scholar]
  6. Madlener, K., and H. K. Ciezki. 2005. Theoretical investigation of the flow behavior of gelled propellants of the extended Herschel–Bulkley type. 1st European Conference on Aerospace Sciences. Moscow, Russia. [Google Scholar]
  7. Negri, M., M. Redaelli, and H. K. Ciezki. 2012. Recent results on thread formation with an impinging jet injector. AIAA Paper No. 2012-3967. [Google Scholar]
  8. Negri, M., M. Redaelli, H. K. Ciezki, and S. Schlechtriem. 2012. Influence of relaxation time on the spray behavior of viscoelastic fluids with an impinging jet injector. 61st German Aerospace Congress (Deutscher Luft- und Raumfahrtkongress) 2012. Berlin, Germany. [Google Scholar]
  9. Negri, M. 2013. Breakup behavior of non-Newtonian fluids with threads and droplets formation in impinging jet injectors. Stuttgart, Germany: University of Stuttgart. PhD Thesis. [Google Scholar]
  10. Madlener, K., and H. K. Ciezki. 2012. Estimation of flow properties of gelled propellants with regard to propulsion systems. J. Propul. Power 28:113–121. [Google Scholar]
  11. Negri, M., and H. K. Ciezki. 2015. Combustion of gelled propellants containing micro and nano-sized aluminum particles. J. Propul. Power 31(1):400–407. [Google Scholar]
  12. Negri, M., H. K. Ciezki, and S. Schlechtriem. 2013. Spray behavior of non-Newtonian fluids: Correlation between rheological measurements and droplets/threads formation. Progress in propulsion physics. Eds. L. DeLuca, C. Bonnal, O. Haidn, and S. Frolov, EUCASS advances in aerospace sciences book ser. TORUS PRESS –EDP Sciences. 4:271–290. [Google Scholar]
  13. Von Kampen, J., F. Alberio, and H. K. Ciezki. 2007. Spray and combustion characteristics of aluminized gelled propellants with an impinging jet injector. Aerosp. Sci. Technol. 11:77–83. [Google Scholar]
  14. Gafni, G., A. Kuznetsov, and B. Natan. 2015. Experimental investigation of an aluminized gel fuel ramjet combustor. Chemical rocket propulsion – a comprehensive survey of energetic materials. Eds. L. DeLuca, T. Shimada, V. P. Sinditskii, and M. Calabro. Springer Verlag. Ch. 3. Paper No. 12. [Google Scholar]
  15. Balas, S., and B. Natan. 2016. Boron oxide condensation in a hydrocarbon–boron gel fuel ramjet. J. Propul. Power 32(4):967–974. [Google Scholar]
  16. Ciezki, H. K., and M. Negri. 2013. Overview on gel propulsion activities at DLR Institute of Space Propulsion. European Conference on Aerospace Sciences. Munich, Germany. Paper No. 267. [Google Scholar]
  17. Ciezki, H. K., M. Negri, and A. Gernoth. 2015. Advanced liquid and gelled propellants for rocket and ramjet propulsion. Int. J. Energetic Materials Chemical Propulsion 14(2):85–123. [Google Scholar]
  18. Stierle, R., K. Schmid, J. Ramsel, and K. W. Naumann. 2011. Free-flight demonstration of the gelled propellant rocket motor of MBDA-Bayern-Chemie. 4th European Conference for Aeronautics and Space Sciences. St. Petersburg, Russia. [Google Scholar]
  19. Naumann, K. W., H. K. Ciezki, R. Stierle, K. Schmid, and J. Ramsel. 2011. Rocket propulsion with gelled propellants for sounding rockets. 20th ESA Symposium on European Rocket and Ballon Programmes and Related Research. Hyères, France. [Google Scholar]
  20. Naumann, K. W., J. Ramsel, P. Caldas-Pinto, H. Niedermaier, S. Scheutzow, C. M. Rienäcker, and A. Thumann. 2014. Gelled green propellant rocket motor and gas generator technology at Bayern–Chemie — status and applications for space systems. AIAA Paper No. 2014-3796. [Google Scholar]
  21. Naumann, K. W., J. Ramsel, K. Schmid, P. Caldas-Pinto, H. Niedermaier, and A. Thumann. 2013. Application of green propulsion systems using rocket motors and gas generators with gelled propellants. 5th European Conference for Aeronautics and Space Sciences. Munich, Germany. [Google Scholar]
  22. Janovsky, R., M. Kassebom, H. Lübberstedt, O. Romberg, H. Burkhardt, M. Sip-pel, G. Krülle, and B. Fritsche. 2002. End-of-life de-orbiting strategies for satellites. Deutscher Luft-und Raumfahrtkongress 2002. Stuttgart, Germany. [Google Scholar]
  23. Naumann, K. W., J. Ramsel, H. Niedermaier, P. Caldas-Pinto, N. Hopfe, S. Scheut-zow, C. M. Riemäcker, and A. Thumann. 2014. The application of rocket motors and gas generators with gelled propellants for BMD interceptors. AAAF 10th Conference (International) on Missile Defence. Mainz, Germany. [Google Scholar]
  24. Caldas Pinto, P., J. Ramsel, S. Scheutzow, K. W. Naumann, A. Thumann, and G. Kurth. 2015. Control characteristics of a gel propellant throttleable rocket motor. 6th European Conference for Aeronautics and Space Sciences. Krakow, Poland. [Google Scholar]