Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 65 - 90
DOI https://doi.org/10.1051/eucass/201911065
Published online 08 February 2019
  1. Altman, D., and A. Holzman. 2008. Overview and history of hybrid rocket propulsion. Fundamentals of hybrid rocket combustion and propulsion. Eds. M. J. Chiaverini and K. K. Kuo. AIAA progress in astronautics and aeronautics ser. Vol. 218. Ch. 1. P. 1–36. [Google Scholar]
  2. Chiaverini, M. J. 2007. Review of solid fuel regression rate behavior in classical and non-classical hybrid rocket motors. Fundamentals of hybrid rocket combustion and propulsion. Eds. M. J. Chiaverini and K. K. Kuo. AIAA progress in astronautics and aeronautics ser. Vol. 218. Ch. 2. P. 37–125. [Google Scholar]
  3. Marxman, G. A., and M. Gilbert. 1963. Turbulent boundary layer combustion in the hybrid rocket. 9th Symposium (International) on Combustion. New York, NY: Academic Press, Inc. 371–383. [Google Scholar]
  4. Marxman, G. A. 1967. Boundary layer combustion in propulsion. 11th Symposium (International) on Combustion Proceedings. Pittsburg, PA: The Combustion Institute. 269–289. [Google Scholar]
  5. Marxman, G. A., and C. E. Wooldridge. 1968. Research on the combustion mechanism of hybrid rockets. Advances in tactical rocket propulsion: AGARD Conference Proceedings. Ed. S. S. Penner. 1:421–477. [Google Scholar]
  6. Risha, G. A., G. C. Harting, K. K. Kuo, A. Peretz, D. E. Koch, H. S. Jones, and J. P. Arves. 1998. Pyrolysis and combustion of solid fuels in various oxidizing environments. AIAA Paper No. 1998-3184-556. [Google Scholar]
  7. Chiaverini, M. J., G. C. Harting, Y. C. Lu, K. K. Kuo, A. Peretz, S. Jones, B. Wygle, and J. P. Arves. 1999. Pyrolysis behavior of hybrid rocket solid fuels under rapid heating conditions. J. Propul. Power 15(6):888–895. [Google Scholar]
  8. Paravan, C., M. Manzoni, G. Rambaldi, and L. T. DeLuca. 2013. Analysis of quasisteady and transient burning of hybrid fuels in a laboratory-scale burner by an optical technique. Int. J. Energetic Materials Chemical Propulsion 12(5):385–410. doi: 10.1615/IntJEnergeticMaterialsChemProp.20130. [Google Scholar]
  9. Risha, G. A., B. J. Evans, E. Boyer, and K. K. Kuo. 2007. Metals, energetic additives and special binders used in solid fuels for hybrid rockets. Fundamentals of hybrid rocket combustion and propulsion. Eds. M. J. Chiaverini and K. K. Kuo. AIAA progress in astronautics and aeronautics ser. Vol. 218. Ch. 10. P. 413–456. [Google Scholar]
  10. Karabeyoglu, M. A., D. Altman, and B. J. Cantwell. 2002. Combustion of liquefying hybrid propellants: Part 1, general theory. J. Propul. Power 18(3):610–620. [Google Scholar]
  11. Karabeyoglu, M. A., and B. J. Cantwell. 2002. Combustion of liquefying hybrid propellants: Part 2, stability of liquid films. J. Propul. Power 18(3):621–630. [Google Scholar]
  12. Knuth, W. A., M. J. Chiaverini, J. A. Sauer, and D. J. Gramer. 2002. Solid–fuel regression rate behavior of vortex hybrid rocket engines. J. Propul. Power 18(3):600–609. [Google Scholar]
  13. Shin, K. H., C. Lee, and S. Y. Chang. 2005. The enhancement of regression rate of hybrid rocket fuel by various methods. AIAA Paper No. 2005-0359. [Google Scholar]
  14. Kim, S., J. Lee, H. Moon, H. Sung, J. Kim, and J. Cho. 2010. Effect of parffin-LDPE blended fuel in hybrid rocket motor. AIAA Paper No. 2010–7031. [Google Scholar]
  15. Calabro, M., L. T. DeLuca, L. Galfetti, and C. Perut. 2007. Advanced hybrid solid fuels. 58th Astronautical Congress (International). Hyderabad, India. IAC-07-C4.2.09. [Google Scholar]
  16. George, P., S. Krishnan, P. M. Varkey, M. Ravindran, and L. Ramachandran. 1998. Fuel regression rate enhancement studies in HTPB/GOx hybrid rocket motors. AIAA Paper No.A98-35064. [Google Scholar]
  17. Frederick, R. A., J. J. Whitehead, L. R. Knox, and M. D. Moser. 2007. Regression rates study of mixed hybrid propellants. J. Propul. Power 23(1):175–180. [Google Scholar]
  18. Osmon, R. V. 1966. An experimental investigation of a lithium aluminum hydride – hydrogen peroxide hybrid rocket. Aerospace chemical engineering. Ed. D. J. Simkin. Chemical Engineering Progress Symposium ser. American Institute of Chemical Engineers. 62(21):92–102. [Google Scholar]
  19. Sarner, S. F. 1966. Propellant chemistry. Reinhold Publishing Corp. 350 p. [Google Scholar]
  20. Maggi, F., G. Gariani, L. Galfetti, and L. T. DeLuca. 2012. Theoretical analysis of hydrides in solid and hybrid rocket propulsion. Int. J. Hydrogen Energ. 37:1760–1769. [Google Scholar]
  21. Humble, R. W. 2000. Fuel operformance enhancements for hybrid rockets. AIAA Paper No. 2000–3437. [Google Scholar]
  22. Larson, B. D., E. Boyer, T. Wachs, K. K. Kuo, J. D. DeSain, T. J. Curtiss, and B. B. Brady. 2011. Characterization of the performance of paraffin/LiAlH4 solid fuels in a hybrid rocket system. AIAA Paper No. 2011–5822. [Google Scholar]
  23. DeSain, J. D., T. J. Curtiss, K. Metzler, and B. Brady. 2011. Testing hypergolic ignition of paraffin wax/LiAlH4 mixtures. AIAA Paper No. 2011–6636. [Google Scholar]
  24. Schoenitz, M., B. Patel, O. Agboh, and E. L. Dreizin. 2010. Oxidation of aluminum powders at high heating rates. Thermochim. Acta 507–508:115–122. [Google Scholar]
  25. Hahma, A. 2004. Method of improving the burn-rate and ignitability of aluminium fuel particles and aluminium fuel so modified. WO Patent WO/2004/048,295. Available at: http://patentscope.wipo.int/search/en/WO200404829 (accessed February 8, 2018). [Google Scholar]
  26. Hahma, A., A. Gany, and K. Palovuori. 2006. Combustion of activated aluminum. Combust. Flame 145(3):464–480. [Google Scholar]
  27. Paravan, C., A. Reina, A. Sossi, M. Manzoni, G. Massini, G. Rambaldi, E. Duranti, A. Adami, E. Seletti, and L. T. DeLuca. 2012. Time-resolved regression rate of innovative solid fuel formulations. Progress in propulsion physics. Eds. L. T. DeLuca, C. Bonnal, O. Haidn, and S. M. Frolov. Moscow: TORUS PRESS. 4:75–98. [Google Scholar]
  28. Maggi, F., S. Dossi, C. Paravan, L. T. DeLuca, and M. Liljedahl. 2013. Activated aluminum for space propulsion. Powder Technol. 270(A):46–52. [Google Scholar]
  29. Paravan, C. 2012. Ballistics of innovative solid fuel formulations for hybrid rocket engines. Politecnico di Milano, Department of Aerospace Science and Technology. PhD Diss. [Google Scholar]
  30. Kitagawa, K., P. Joseph, V. Novozhilov, and T. Shimada. 2012. Characteristics of chemically modified and nanocomposite polymers as novel fuels for hybrid rocket propulsion. Int. J. Energetic Materials Chemical Propulsion 11(6):549–566. [Google Scholar]
  31. Air Force SBIR/STTIR. 2012. Magnesium boron composites developed as a new fuel for propulsion and combustion. Available at http://www. afsbirsttr.com/Publications/Documents/Innovation-050610-MACHI-OSD05-T001.pdf (accessed June 2015). [Google Scholar]
  32. Sippel, T., S. F. Son, and L. J. Groven. 2013. Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation. Propell. Explos. Pyrot. 38(2):286–295. [Google Scholar]
  33. Dossi, S. 2014. Mechanically activated Al fuels for high performance solid rocket propellants. Politecnico di Milano, Department of Aerospace Science and Technology. PhD Diss. [Google Scholar]
  34. Barseghyana, S. H., and Y. Sakka. Mechanochemical activation of aluminum powder and synthesis of alumina based ceramic composites. Ceram. Int. 39(7):8141–8146. [Google Scholar]
  35. Gromov, A. A., A. Ilyin, U. Forter-Barth, and U. Teipel. 2006. Characterization of aluminum powders: II. Aluminum nanopowders passivated by non-inert coatings. Propell. Explos. Pyrot. 31(5):401–409. [Google Scholar]
  36. Pantoya, M. L., and J. J. Granier. 2005. Combustion behavior of highly energetic thermites: Nano- versus micron-composites. Propell. Explos. Pyrot. 30(1):53–62. [Google Scholar]
  37. Risha, G. A., B. Evans, E. Boyer, R. B. Wehrman, and K. K. Kuo. 2003. Nano-sized aluminum, and boron-based solid fuel characterization in a hybrid rocket engine. AIAA Paper No. 2003-4593. [Google Scholar]
  38. Evans, B., N. A. Favorito, E. Boyer, and K. K. Kuo. 2004. Characterization of solid fuel burning rates in an X-ray transparent hybrid rocket engine. AIAA Paper No. 2004-3821. [Google Scholar]
  39. Sossi, A., E. Duranti, M. Manzoni, C. Paravan, L. T. DeLuca, A. B. Vorozhtsov, M. I. Lerner, N. G. Rodkevich, A. A. Gromov, and N. Savin. 2013. Combustion of HTPB-based solid fuels loaded with coated nanoaluminum. Combust. Sci. Technol. 185(1):17–36. [Google Scholar]
  40. Reina, A. 2013. Nano-metal fuels for hybrid and solid propulsion. Politecnico di Milano, Department of Aerospace Sciences and Technologies. PhD Thesis. [Google Scholar]
  41. Kwok, Q. S. M., R. C. Fouchard, A. M. Turcotte, P. D. Lightfoot, R. Bowes, and D.E.G. Jones. 2002. Characterization of aluminum nanopowder compositions. Propell. Explos. Pyrot. 27:229–240. [Google Scholar]
  42. Cliff, M., F. Tepper, and V. Lisetsky. 2001. Ageing characteristics of ALEXTM nanosized aluminum. AIAA Paper No. 2001-3287. [Google Scholar]
  43. Kivity, M., G. Hartman, and A. M. Achlama. 2005. Aging of HTPB propellant. AIAA Paper No. 2005–3802. [Google Scholar]
  44. Cerri, S., M. A. Bohn, K. Menke, and L. Galfetti. 2009. Ageing behavior of HTPB-based rocket propellant formulations. Cent. Eur. J. Energ. Mat. 6(2):149–165. [Google Scholar]
  45. Sossi, A., E. Duranti, C. Paravan, L. T. DeLuca, A. B. Vorozhtsov, A. A. Gromov, Y. I. Pautova, M. I. Lerner, and N. G. Rodkevich. 2013. Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and fluorohydrocarbons. Appl. Surf. Sci. 271:337–343. [Google Scholar]
  46. DeLuca, L. T., L. Galfetti, F. Maggi, G. Colombo, C. Paravan, A. Reina, S. Dossi, M. Fassina, and A. Sossi. 2014. Characterization and combustion of aluminum nanopowders in energetic systems. Metal nanopowders: Production, characterization, and energetic applications. Eds. A. A. Gromov and U. Teipel. John Wiley & Sons. 301–410. doi: 10.1002/9783527680696.ch12. [Google Scholar]
  47. Ilyin, A., A. Gromov, V. An, F. Faubert, C. de Izarra, A. Espagnacq, and L. Brunet. 2002. Characterization of aluminum powders I. Parameters of reactivity of aluminum powders. Propell. Explos. Pyrot. 27(6):361–364. [Google Scholar]
  48. Maggi, F. 2014. Curing viscosity of HTPB-based binder embedding micro- and nano-aluminum particles. Propell. Explos. Pyrot. 39(5):755–760. [Google Scholar]
  49. Resodyn™ Acoustic Mixtures. 2015. LabRAM Mixer. Available at: http://www.resodynmixers.com/products/labram/ (accessed February 9, 2018). [Google Scholar]
  50. Biswas, S. W., and K. Vijaian. 1992. Friction and wear of PTFE — a review. Wear 158(1):193–211. [Google Scholar]