Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 713 - 728
DOI https://doi.org/10.1051/eucass/201911713
Published online 08 February 2019
  1. Fry, R. S. 2004. A century of ramjet propulsion technology evolution. J. Propul. Power 20:27–58. [Google Scholar]
  2. Frederick, R. A., Jr., and I. Komai. 1996. Propellant design relationships for throttled gas generators. J. Propul. Power 12:614–616. [Google Scholar]
  3. Besser, H., H. Weinreich, and G. Kurth. 2008. Fit for mission-design tailoring aspects of throttleable ducted rocket propulsion systems. AIAA Paper No. 2008-5262. [Google Scholar]
  4. Hweitt, P. W. 2008. Status of ramjet programs in the United States. AIAA Paper No. 2008-5265. [Google Scholar]
  5. Nakayama, H., Y. Ikegami, A. Yoshida, K. Koon, K. Watanabe, H. Tokunaga, H. Shimizu, and S. Kanaizumi. 2009. Full-scale firing tests of variable flow ducted rocket engines employing GAP solid fuel gas generator. AIAA Paper No. 2009-5121. [Google Scholar]
  6. Pinto, P. C., and G. Kurth. 2011. Robust propulsion control in all flight stages of a throttleable ducted rocket. AIAA Paper No. 2011-5611. [Google Scholar]
  7. Liou, T. M., L. Chen, and S. M. Wu. 1993. Effects of momentum ratio on turbulent non-reacting and reacting flows in a ducted rocket combustor. Int. J. Heat Mass Tran. 36:2589–2599. [Google Scholar]
  8. Brophy, C. M., C. W. Hawk, and J. M. Bush. 2001. An investigation of four-inlet ducted rocket engine flameholding characteristics. AIAA Paper No. 1997-2846. [Google Scholar]
  9. Kurth, G., and C. Bauer. 2008. Air intake development for supersonic missiles. AIAA Paper No. 2008-5263. [Google Scholar]
  10. Clark, W. H. 1982. Experimental investigation of pressure oscillations in a side dump ramjet combustor. J. Spacecraft Rockets 19:47–53. [Google Scholar]
  11. Chuang, C. L., D. L. Cherng, W. H. Hsieh, G. S. Settles, and K. K. Kuo. 1989. Study of flowfield structure in a simulated solid-propellant ducted rocket motor. AIAA Paper No. 89-0011. [Google Scholar]
  12. Dijkstra, F., A. E. H. J. Mayer, K. J. Wilson, R. A. Smith, and K. C. Schadow. 1995. Ducted rocket combustion experiments at low gas generator combustion temperatures. AIAA Paper No. 95-2415. [Google Scholar]
  13. Mayer, A. E. H. J., and R. A. Stowe. 2000. Experimental study into mixing in a solid fuel ducted rocket combustion chamber. AIAA Paper No. 2000-3346. [Google Scholar]
  14. Kim, S., and B. Natan. 2015. Inlet geometry and equivalence ratio Effects on combustion in a ducted rocket. J. Propul. Power 31:619–631. [Google Scholar]
  15. Kubota, N., and T. Kuwahara. 1991. Combustion of energetic fuel for ducted rockets (I). Propell. Explos. Pyrot. 16:51–54. [Google Scholar]
  16. Kubota, N., and T. Sonobe. 1988. Combustion mechanism of azide polymer. Propell. Explos. Pyrot. 13:172–177. [Google Scholar]
  17. Gordon, S., and B. J. McBride. 1994. Computer program for calculation of complex chemical equilibrium compositions and applications. NASA RP-1311. [Google Scholar]
  18. Dunsworth, L. C., and G. J. Reed. 1979. Ramjet engine testing and simulation techniques. J. Spacecraft Rockets 16:382–388. [Google Scholar]
  19. Propulsion and Energetics Panel Working Group 22. 1994. Experimental and ana- lytical methods for the determination of connected-pipe ramjet and ducted rocket internal performance. AGARD Advisory Report AGARD-AR-323. [Google Scholar]
  20. Cohen-Zur, A., and B. Natan. 1998. Experimental investigation of a supersonic combustion solid fuel ramjet. J. Propul. Power 14:880–889. [Google Scholar]