Open Access
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 425 - 446
Published online 08 February 2019
  1. Ross, C. C., and P. P. Datner. 1954. Combustion instability in liquid-propellant rocket motors – a survey. Selected combustion problems: Fundamentals and aeronautical applications. Eds. W. R. Hawthorne, J. Fabri, and D. B. Spalding. But-terworths Scientific Publications. Advisory Group for Aeronautical Research and Development North Atlantic Treaty Organization. 352–380. [Google Scholar]
  2. Harrje, D. T., and F. H. Reardon. 1972. Liquid propellant rocket combustion instability. NASA Special Publication No. SP-194. [Google Scholar]
  3. Anderson, W. E., H. M. Ryan, and R. J. Santoro 1991. Combustion instability phenomena of importance to liquid bi-propellant rocket engine. 28th JANNAF Combustion Subcommittee Meeting. Ed. M. T. Gannaway. Columbia, MD: Chemical Propulsion Information Agency. 99–112. [Google Scholar]
  4. Yang, V., and W. E. Anderson, eds. 1995. Liquid rocket engine combustion instability. Progress in astronautics and aeronautics ser. Washington, DC: American Institute of Aeronautics and Astronautics. Vol. 169. 577 p. [Google Scholar]
  5. Pieringer, J., and T. Sattelmayer. 2009. Simulation of combustion instabilities in liquid rocket engines with acoustic perturbation equations. J. Propul. Power 25(5):1020–1031. [Google Scholar]
  6. Schulze, M., M. Schmid, D. Morgenweck, S. Köglmeier, and T. Sattelmayer. 2013. A conceptional approach for the prediction of thermoacoustic stability in rocket engines. AIAA Paper No. 2013-3779. [Google Scholar]
  7. Rayleigh, J. W. S. 1878. The explanation of certain acoustical phenomena. Nature 18(455):319–321. [NASA ADS] [CrossRef] [Google Scholar]
  8. Rayleigh, J. W. S. 1945. The theory of sound. 2nd ed. New York, NY: Dover Publications. Vol. 2. 504 p. [Google Scholar]
  9. Putnam, A. A., and W. R. Dennis. 1953. Organ-pipe oscillations in a flame-filled tube. 4th Symposium (International) on Combustion. Baltimore, MD: The Williams & Wilkins Co. 566–575. [Google Scholar]
  10. Putnam, A. A., and W. R. Dennis. 1954. Burner oscillations of the gauze-tone type. J. Acoust. Soc. Am. 26(5):716–725. [NASA ADS] [CrossRef] [Google Scholar]
  11. Sutton, G. P., and O. Biblarz. 2001. Rocket propulsion elements. 7th ed. New York, NY: John Wiley & Sons. 764 p. [Google Scholar]
  12. Gröning, S., M. Oschwald, and T. Sattelmayer. 2012. Selbst erregte tangentiale Moden in einer Raketenbrennkammer unter repr.asentativen Bedingungen. 61. Deutscher Luftund Raumfahrtkongress. Berlin: Deutsche Gesellschaft f.ur Luftund Raumfahrt – Lilienthal-Oberth e. V. [Google Scholar]
  13. Richecoeur, F., P. Scouflaire, S. Ducruix, and S. Candel. 2006. High-frequency transverse acoustic coupling in a multiple-injector cryogenic combustor. J. Propul. Power 22(4):790–799. [Google Scholar]
  14. Knapp, B., and M. Oschwald. 2006. High speed visulization of flame response in a LOx/H2 combustion chamber during external excitation. 12th Symposium (International) on Flow Visulization. Göttingen. [Google Scholar]
  15. Oschwald, M., and B. Knapp. 2009. Investigation of combustion chamber acoustics and its interaction with LOx/H2 spray flames. Progress in propulsion physics. Eds. L. T. DeLuca, C. Bonnal, O. Haidn, and S. M. Frolov. EUCASS advances in aerospace sciences book ser. 1:205–224. [Google Scholar]
  16. Sliphorst, M., B. Knapp, S. Groening, and M. Oschwald. 2012. Combustion instability-coupling mechanisms between liquid oxygen/methane spray flames and acoustics. J. Propul. Power 28(6):1339–1350. [Google Scholar]
  17. Hardi, J. S., S. K. Beinke, M. Oschwald, and B. B. Dally. 2014. Coupling of cryogenic oxygen–hydrogen flames to longitudinal and transverse acoustic instabilities. J. Propul. Power 30(4):991–1004. [Google Scholar]
  18. Wierman, M., B. Pomeroy, T. Feldman, W. Hallum, and W. Anderson. 2012. Application of proper orthogonal decomposition to light intensity measurements of combustion instability. AIAA Paper No. 2012-4203. [Google Scholar]
  19. Quinlan, J. M., and B. T. Zinn. 2014. Transverse combustion instabilities: Modern experimental techniques and analysis. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, OH: American Institute of Aeronautics and Astronautics. [Google Scholar]
  20. Bedard, M. J., V. S. Sardeshmukh, T. L. Fuller, W. E. Anderson, and M. Tanabe. 2014. Chemiluminescence as a diagnostic in studying combustion instability in a practical combustor. AIAA Paper No. 2014-3660. [Google Scholar]
  21. Bedard, M. J., V. S. Sardeshmukh, T. L. Fuller, and W. E. Anderson. 2015. Comparison between predicted and measured chemiluminescence in an unstable rocket combustor. 6th European Conference for Aeronautics and Space Sciences. Krakow. [Google Scholar]
  22. Fiala, T., and T. Sattelmayer. 2016. Assessment of existing and new modeling strategies for the simulation of OH* radiation in high-temperature flames. CEAS Space J. 8(1):47–58. [NASA ADS] [CrossRef] [Google Scholar]
  23. Gröning, S., D. Suslov, M. Oschwald, and T. Sattelmayer. 2013. Stability behaviour of a cylindrical rocket engine combustion chamber operated with liquid hydrogen and liquid oxygen. 5th European Conference for Aeronautics and Space Sciences. Munich. [Google Scholar]
  24. Sliphorst, M., S. Gröning, and M. Oschwald. 2011. Theoretical and experimental identi|cation of acoustic spinning mode in a cylindrical combustor. J. Propul. Power 27(1):182–189. [Google Scholar]
  25. Gaydon, A. G. 1974. The spectroscopy of flames. 2nd ed. London: Chapman and Hall. 424 p. [Google Scholar]
  26. Suslov, D., A. Woschnak, J. Sender, and M. Oschwald. 2003. Test specimen design and measurement technique for investigation of heat transfer processes in cooling channels of rocket engines under real thermal conditions. AIAA Paper No. 2003-4613. [Google Scholar]
  27. Sender, J., D. I. Suslov, J. Deeken, S. Gröning, and M. Oschwald 2016. “L42” technology demonstrator: Operational experience. Space Propulsion 2016. Rome: Association aéronautique et astronautique de France (3AF). [Google Scholar]
  28. Fröhlke, K., A. Haberzettl, O. J. Haidn, S. Heinrich, M. Sion, and P. Vuillermoz. 1997. First hot fire test campaign at the French/German research facility P8. 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Seattle, WA. [Google Scholar]
  29. Koschel, W., and O. J. Haidn. 1998. P8 – the new French/German test facility for H2/O2 high pressure rocket engine combustion research. Int. J. Hydrogen Energ. 23(8):683–694. [Google Scholar]
  30. Haberzettl, A. 2000. European research and technology test bench P8 for high pressure liquid rocket propellants. AIAA Paper No. 2000-3307. [Google Scholar]
  31. Fiala, T., and T. Sattelmayer. 2013. Heat release and OH*-radiation in laminar non-premixed hydrogen–oxygen flames. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine, TX: American Institute of Aeronautics and Astronautics. [Google Scholar]
  32. Fiala, T., and T. Sattelmayer. 2013 On the use of OH* radiation as a marker for the heat release rate in high-pressure hydrogen–oxygen liquid rocket combustion. AIAA Paper No. 2013-3780. [Google Scholar]
  33. Gröning, S., J. S. Hardi, D. Suslov, and M. Oschwald. 2016. Injector-driven combustion instabilities in a hydrogen/oxygen rocket combustor. J. Propul. Power 32(3):560–573. doi:10.2514/1.B35768. [Google Scholar]
  34. Spicher, U., and A. Velji. 1985. Measurements of spatial flame propagation and flow velocities in a spark ingnition engine. 12th Symposium (International) on Combustion. 20:19–27. [Google Scholar]
  35. Pöschl, M. 2006. Einfluss von Temperaturinhomogenitäten auf den Reaktionsablauf bei der klopfenden Verbrennung. München: Technische Universität München. Ph. D.Thesis. [Google Scholar]
  36. Knapp, B., Z. Farago, and M. Oschwald. 2007. Interaction of LOx/GH2 spray-combustion with acoustics. AIAA Paper No. 2007-0572. [Google Scholar]
  37. Stearns, S. D. 1975. Digital signal analysis. Rochelle Park, NJ: Hayden Book Co. 280 p. [Google Scholar]
  38. Zucrow, M. J., and J. D. Hoffmann. 1985. Gas dynamics. Vol. II: Multidimesional flow. 2nd ed. Malabar, FL: Robert E. Krieger Publishing Co. 487 p. [Google Scholar]