Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 407 - 424
DOI https://doi.org/10.1051/eucass/201911407
Published online 08 February 2019
  1. Harrje, D. T., and F. H. Reardon. 1972. Liquid propellant rocket combustion insta-bility. NASA-SP-194. [Google Scholar]
  2. Barrère, M., and F. Williams. 2001. Comparison of combustion instabilities found in various types of combustion chambers. 12th Symposium (International) on Combustion. 169–181. [Google Scholar]
  3. Yang, V., and W. Anderson, eds. 1995. Liquid rocket engine combustion instability. Progress in astronautics and aeronautics ser. Washington, D. C.: AIAA. Vol. 169. 657 p. [Google Scholar]
  4. Biggs, R. 2009. F-1 Saturn V stage engine, remembering the giants. Chapter 1, F-1 Saturn V Stage Engine. Monograph in aerospace history No. 45. Apollo Rocket Propulsion Development. [Google Scholar]
  5. Richecoeur, F., P. Scouflaire, S. Ducruix, and S. Candel. 2006. High frequency transverse acoustic coupling in a multiple injector cryogenic combustor. J. Propul. Power 22:790–799. [Google Scholar]
  6. Méry, Y., L. Hakim, P. Scouflaire, L. Vingert, S. Ducruix, and S. Candel. 2013. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations. Comptes Rendus Mécanique 341:100–109. [NASA ADS] [CrossRef] [Google Scholar]
  7. Hardi, J. S., H. C. Martinez, M. Oschwald, and B. B. Dally. 2014. LOx jet atomization under transverse acoustic oscillations. J. Propul. Power 30(2):337–349. [Google Scholar]
  8. Hardi, J. S., S. K. Beinke, M. Oschwald, and B. B. Dally. 2014. Coupling of cryogenic oxygen–hydrogen flames to longitudinal and transverse acoustic instabilities. J. Propul. Power 30(4):991–1004. [Google Scholar]
  9. Richecoeur, F., S. Ducruix, P. Scouflaire, and S. Candel. 2008. Experimental investigation of high-frequency combustion instabilities in liquid rocket engine. Acta Astronaut. 62(1):18–27. [NASA ADS] [CrossRef] [Google Scholar]
  10. Webster, S. C. L., J. S. Hardi, and M. Oschwald. 2014. High pressure visualisation of liquid oxygen and cryogenic hydrogen combustion under an imposed acoustic field. 19th Australasian Fluid Mechanics Conference. [Google Scholar]
  11. Fiala, T., and T. Sattelmayer. 2013. On the use of OH* radiation as a marker for the heat release rate in high-pressure hydrogen–oxygen liquid rocket combustion. 5th EUCASS Conference. [Google Scholar]
  12. Fiala, T. 2015. Radiation from high pressure hydrogen–oxygen flames and its use in assessing rocket combustion instability. Technische Universität M. unchen. PhD Thesis. [Google Scholar]
  13. Fiala, T., and T. Sattelmayer. 2015. Heat release and UV–Vis radiation in non-premixed hydrogen–oxygen flames. Exp. Fluids 56(144). doi:10.1007/s00348-015-2013-8. [CrossRef] [Google Scholar]
  14. Fiala, T., and T. Sattelmayer. 2016. Assessment of existing and new modeling strategies for the simulation of OH* radiation in high-temperature flames. CEAS Space J. 8:47–58. doi: 10.1007/s12567-015-0107-z. [NASA ADS] [CrossRef] [Google Scholar]
  15. Gaydon, A. G. 1957. The spectroscopy of flames. Chapman&Hall Ltd. 288 p. [Google Scholar]
  16. Dieke, G. H., and H. M. Crosswhite. 1962. The ultraviolet bands of OH fundamental data. J. Quant. Spectrosc. Ra. Transfer 2(2):97–199. doi:10.1016/0022-4073(62)90061-4. [NASA ADS] [CrossRef] [Google Scholar]
  17. Rowley, C. W., I. Mezic, S. Bagheri, P. Schlatter, and D. S. Henningson. 2009. Spectral analysis of nonlinear flows. J. Fluid Mech. 641:115–127. [NASA ADS] [CrossRef] [Google Scholar]
  18. Schmid, P. J. 2010. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656:5–28. [NASA ADS] [CrossRef] [Google Scholar]
  19. Richecoeur, F., L. Hakim, A. Renaud, and L. Zimmer. 2012. DMD algorithms for experimental data processing in combustion. Proceedings of the Summer Program 2012 of Center of Turbulence Research. 459–468. [Google Scholar]
  20. Bourgouin, J. F., J. Moeck, D. Durox, T. Schuller, and S. Candel. 2013. Sensitivity of swirling flows to small changes in the swirler geometry. Comptes Rendus Mécanique 341(1):211–219. [NASA ADS] [CrossRef] [Google Scholar]
  21. Fiala, T., and T. Sattelmayer. 2014. On the origin of the continuous (blue) radiation in hydrogen flames. Sonderforschungsbereich/Transregio 40. Annual Report. [Google Scholar]