Open Access
Issue
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
Page(s) 467 - 480
DOI https://doi.org/10.1051/eucass/201911467
Published online 08 February 2019
  1. Sutton, G. P. 2006. History of liquid propellant rocket engine. Reston, VA: AIAA. doi:10.2514/4.868870. [Google Scholar]
  2. Gibson, J. N. 1996. The Navaho Missile Project: The story of the “know-how” missile of American rocketry. Schiffer Publishing. 95 p. [Google Scholar]
  3. Katorgin, B., V. Chvanov, V. Rakhmanin, and V. Sudakov. 2004. Leading Russian liquid rocket engines' company. To 75th Anniversary of NPO Energomash. AIAA Paper No. 2004-3339. [Google Scholar]
  4. Ministério da Ciência e Tecnologia. 2002. PNAE – Programa Nacional de Ativi-dades Espaciais 2012–2021: AEB – Agência Espacial Brasileira. Brasília, Brasil. [Google Scholar]
  5. Soares, D. A., and C. M.M. Pagliuco. 2014. Development status of L75: A Brazilian liquid propellant rocket engine. J. Aerosp. Technol. Manag. 6(4):475–484. [Google Scholar]
  6. Haeseler, D., A. Götz, and A. Fröhlich. 2000. Non-toxic propellants for future advanced launcher propulsion systems. AIAA Paper No. 2000-3687. [Google Scholar]
  7. Berezanskaya, E. L., V. D. Kurpantenkov, and N. V. Shutov. 1982. Gazogeneratory zhidkostnykh raketnykh dvizhkov [Gas generators for liquid rocket engines]. Moscow: Moscow Aviation Institute. 56 p. [Google Scholar]
  8. Morgan, D., and R. Beichel. 1991. Stoichiometric gas generator – a strategic departure. AIAA Paper No. 91-2584 CP. [Google Scholar]
  9. Lawver, B. R. 1982. Testing of fuel/oxidizer-rich, high-pressure preburners. Sacramento, CA: Aerojet Liquid Rocket Co. Final Report NASA-CR-165609. 253 p. [Google Scholar]
  10. Mah, C. S. 2001. Evaluating the operational limits of a gas generator. AIAA Paper No. 2001-3990. [Google Scholar]
  11. Yang, V., and W. Anderson, eds. 1995. Liquid rocket engine combustion instability. Progress in astronautics and aeronautics ser. Washington, D. C.: AIAA. Vol. 169. 657 p. [Google Scholar]
  12. Moldoveanu, S. C. 2010. Pyrolysis of organic molecules with applications to health and environmental issues. Techniques and instrumentation in analytical chemistry ser. Elsevier. Vol. 28. 20 p. [Google Scholar]
  13. Kauffmann, J., A. Herbertz, and M. Sippel. 2001. Systems analysis of a high thrust, low-cost rocket engine. ESA SART 02. 7 p. [Google Scholar]
  14. Li, J., A. Kazakov, and F. L. Dryer. 2004. Experimental and numerical studies of ethanol decomposition reactions. Princeton, NJ: Princeton University, Department of Mechanical and Aerospace Engineering. 41 p. [Google Scholar]
  15. Niwa, M., A. Santana, Jr., and K. Kessaev. 2001. Development of a resonance igniter for GO2/kerosene ignition. J. Propul. Power. 17(5):995–997. [Google Scholar]
  16. Gordon, S., and B. J. McBride. 1994. Computer program for calculation of complex chemical equilibrium compositions and applications. I: Analysis. NASA RP-1311. 61 p. [Google Scholar]
  17. Vasiliev, A. P., V. M. Kudryavtsev, V. A. Kuznetsov, et al. 1993 Osnovy teorii rascheta zhidkostnykh raketnykh dvigateley [Theory and calculation of liquid rocket engines]. Ed. V. M. Kudryavtsev. 4th ed. Moscow: Vysshaya Shkola. Book 2. 367 p. [Google Scholar]
  18. Huzel, D. K., and D. H. Huang. 1992. Modern engineering for design of liquid-propellant rocket engines. Progress in astronautics and aeronautics ser. American Institute of Aeronautics and Astronautics. Vol. 147. 431 p. [Google Scholar]