Open Access
Issue
Volume 10, 2018
Progress in Flight Dynamics, Guidance, Navigation, and Control – Volume 10
Page(s) 239 - 264
DOI https://doi.org/10.1051/eucass/201810239
Published online 08 June 2018
  1. Ellery, A., J. Kreisel, and B. Sommer. 2008. The case for robotic on-orbit servicing of spacecraft: Spacecraft reliability is a myth. Acta Astronaut. 63:632–648. [NASA ADS] [CrossRef] [Google Scholar]
  2. Liou, J.-C., N.L. Johnson, and N.M. Hill. 2010. Controlling the growth of future LEO debris populations with active debris removal. Acta Astronaut. 66(5-6):648–653. [NASA ADS] [CrossRef] [Google Scholar]
  3. Jaekel, S., R. Lampariello, G. Panin, et al. 2015. Robotic capture and de-orbit of a heavy, uncooperative and tumbling target satellite in low Earth orbit. 13th Symposium on Advanced Space Technologies in Robotics and Automation Proceedings. Noordwijk, The Netherlands. [Google Scholar]
  4. Dubowsky, S., and E. Papadopoulos. 1993. The kinematics, dynamics, and control of free-flying and fre-floating space robotic systems. IEEE T. Robotic. Autom. 9(5):531–543. [Google Scholar]
  5. Rybus, T., J. Lisowski, K. Seweryn, and T. Barciński. 2012. Numerical simulations and analytical analyses of the orbital capture manoeuvre as a part of the manipulator-equipped servicing satellite design. 17th Conference (International) on Methods and Models in Automation and Control Proceedings. Miedzyzdroje, Poland. [Google Scholar]
  6. Seweryn, K., and M. Banaszkiewicz. 2008. Optimization of the trajectory of a general free-flying manipulator during the rendezvous maneuver. AIAA Guidance, Navigation, and Control Conference and Exhibit Proceedings. Honolulu, HI. [Google Scholar]
  7. Tsai, L.-W. 1999. Robot analysis: The mechanics of serial and parallel manipulators. John Wiley & Sons. 520 p. [Google Scholar]
  8. Rybus, T., T. Barciński, J. Lisowski, et al. 2013. Experimental demonstration of singularity avoidance with trajectories based on the Bézier curves for free-floating manipulator. 9th Workshop (International) on Robot Motion and Control Proceedings. Wąsowo, Poland. [Google Scholar]
  9. Li, C., B. Liang, and W. Xu. 2006. Autonomous trajectory planning of free-floating robot for capturing space target. IEEE/RSJ Conference (International) on Intelligent Robots and Systems Proceedings. Beijing, China. [Google Scholar]
  10. Rybus, T., K. Seweryn, M. Banaszkiewicz, et al. 2012. Dynamic simulations of free-floating space robots. Robot motion and control 2011. Ed. K.R. Kozłowski. Lecture notes in control and information sciences. Springer-Verlag. 422:351–361. [Google Scholar]
  11. Rybus, T., and K. Seweryn. 2015. Application of rapidly-exploring random trees (RRT) algorithm for trajectory planning of free-floating space manipulator. 10th Workshop (International) on Robot Motion and Control Proceedings. Poznań, Poland. [Google Scholar]
  12. Rybus, T., T. Barciński, J. Lisowski, et al. 2013. New planar air-bearing microgravity simulator for verification of space robotics numerical simulations and control algorithms. 12th Symposium on Advanced Space Technologies in Robotics and Automation Proceedings. Noordwijk, The Netherlands. [Google Scholar]
  13. Rybus, T., and K. Seweryn. 2013. Trajectory planning and simulations of the manipulator mounted on a free-floating satellite. Aerospace robotics. GeoPlanet: Earth and planetary sciences book ser. Ed. J. Z. Sąsiadek. Springer-Verlag. 61–73. [Google Scholar]
  14. Haug, E. 1989. Computer aided kinematics and dynamics of mechanical systems. Vol. 1: Basic methods. Allyn and Bacon ser. in engineering. Boston–London–Sydney–Toronto: Allyn and Bacon. 500 p. [Google Scholar]
  15. Wood, G., and D. Kennedy. 2003. Simulating mechanical systems in Simulink with SimMechanics. Natick, USA: The MathWorks, Inc. Technical Report. [Google Scholar]
  16. Seweryn, K., T. Rybus, J. Lisowski, et al. 2014. The laboratory model of the manipulator arm (WMS1 LEMUR) dedicated for on-orbit operation. 12th Symposium (International) on Artificial Intelligence, Robotics and Automation in Space Proceedings. Saint-Hubert, Quebec, Canada. [Google Scholar]
  17. Flores-Abad, A., Z. Wei, O. Ma, and K. Pham. 2014. Optimal control of space robots for capturing a tumbling object with uncertainties. J. Guid. Control Dynam. 37(6):2014–2017. [NASA ADS] [CrossRef] [Google Scholar]
  18. Kaigom, E.G., T. J. Jung, and J. Rossmann. 2011. Optimal motion planning of a space robot with base disturbance minimization. 11th Symposium on Advanced Space Technologies in Robotics and Automation Proceedings. Noordwijk, The Netherlands. [Google Scholar]