Open Access
Volume 10, 2018
Progress in Flight Dynamics, Guidance, Navigation, and Control – Volume 10
Page(s) 159 - 176
Published online 08 June 2018
  1. Pontryagin, L. S., V.G. Boltyanskii, R.V. Gamkrelidze, and E. F. Mishchenko. 1962. The mathematical theory of optimal processes. Interscience. 360 p. [Google Scholar]
  2. Betts, J.T. 2001. Practical methods for optimal control using nonlinear program- ming. 1st ed. Advances in design and control ser. Society for Industrial and Applied Mathematics. Vol. 3. 190 p. [Google Scholar]
  3. Betts, J.T. 1998. Survey of numerical methods for trajectory optimization. J. Guid. Control Dynam. 21(4):193–207. [NASA ADS] [CrossRef] [Google Scholar]
  4. Bellman, R. 1957. Dynamic programming. Princeton, NJ: Princeton University Press. 367 p. [Google Scholar]
  5. Cristiani, E., and P. Martinon. 2010. Initialization of the shooting method via the Hamilton–Jacobi–Bellman approach. J. Optimiz. Theory App. 146(2):321–346. [Google Scholar]
  6. Bokanowski, O., E. Bourgeois, A. Désilles, and H. Zidani. 2015. Global optimization approach for the climbing problem of multi-stage launchers. Prepint on HAL. [Google Scholar]