Open Access
Volume 10, 2018
Progress in Flight Dynamics, Guidance, Navigation, and Control – Volume 10
Page(s) 73 - 86
Published online 08 June 2018
  1. Schmidt, L.V. 1979. Wing rock due to aerodynamic hysteresis. J. Aircraft 16(3):129–133. [Google Scholar]
  2. Hsu, C.-H., and C.E. Lan. 1984. Theory of wing rock. J. Aircraft 22(10):920–924. [Google Scholar]
  3. Elzebda, J.M., A.H. Nayfeh, and D.T. Mook. 1989. Development of an analytical model of wing rock for slender delta wings. J. Aircraft 26(8):737–743. [Google Scholar]
  4. Luo, J., and C. E. Lan. 1993. Control of wing-rock motion of slender delta wings. J. Guid. Control Dynam. 16(2):225–231. [NASA ADS] [CrossRef] [Google Scholar]
  5. Singh, S.N., W. Yirn, and W.R. Wellsa. 1995. Direct adaptive and neural control of wing-rock motion of slender delta wings. J. Guid. Control Dynam. 18(1):25–30. [NASA ADS] [CrossRef] [Google Scholar]
  6. Shue, S.-P., and R.K. Agarwa. 2000. Nonlinear H∞ method for control of wing rock. J. Guid. Control Dynam. 23(1):60–68. [NASA ADS] [CrossRef] [Google Scholar]
  7. Go, T.H., and R. Ramnath. 2002. Analysis of the two degree of freedom wing rock in advanced aircraft. J. Guid. Control Dynam. 25(2):324–333. [NASA ADS] [CrossRef] [Google Scholar]
  8. Calise, J., Y. Shin, and M.D. Johnson. 2004. A comparison study of classical and neural network based adaptive control of wing rock. AIAA Paper No. 2004-5320. [Google Scholar]
  9. Khrabrov, A.N., M. E. Sidoryuk, E.N. Kolesnikov, Yu.A. Vinogradov, I. I. Grishin, and K.A. Kolinko. 2014. On possibility of critical flight regime study in wind tunnels using a three-degree-of-freedom gimbals. TsAGI Science J. 45(8):825–839. [Google Scholar]
  10. Sidoryuk, M.E. 2014. Robust control design to suppress wing rock motion of a wind-tunnel aircraft model in 3DoF gimbals. TsAGI Science J. 45(8):977–992. [Google Scholar]
  11. Faller, W. E., S. J. Schreck, and H.E. Helin. 1995. Real-time model of three dimen- sional dynamic reattachment using neural networks. J. Aircraft 32(6):1177–1182. [Google Scholar]
  12. Ignatyev, D. I., and A.N. Khrabrov. 2015. Neural network modeling of unsteady aerodynamic characteristics at high angles of attack. Aerosp. Sci. Technol. 41:106–115. [Google Scholar]
  13. Kolmogorov, A.T. 1963. On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. American Mathematical Society Translations 28(2):55–59. [Google Scholar]
  14. Golikov, V. I., A.A. Orlov, P.N. Vlasov, and V.A. Syrovatskii. 2010. Control of lateral oscillations of maneuverable aircraft at high angles of attack. Tekhnika vozdushnogo flota LXXXIV(2(699)):17–41. [Google Scholar]
  15. Aström, K., and B. Wittenmark. 1995. Adaptive control. 2nd ed. Readings: Prentice Hall. 574 p. [Google Scholar]
  16. Ioannou, P., and P. Kokotovic. 1984. Instability analysis and improvement of robustness of adaptive control. Automatica 20(5):583–594. [Google Scholar]
  17. Narendra, K., and A. Annaswamy. 1987. A new adaptive law for robust adaptation without persistent excitation. IEEE Trans. Automat. Contr. 32(2):134–145. [CrossRef] [Google Scholar]
  18. Gantmacher, F.R. 1959. Ch. 11: Complex symmetric, skew-symmetric, and orthogonal matrics. The theory of matrices. New York, NY: Chelsea. Vol. 2. [Google Scholar]
  19. Suykens, J.A., J.P. Vandewalle, and B. L.D. Moor. 1996. Artificial neural networks for modelling and control of non-linear systems. Springer. 247 p. [Google Scholar]