Issue |
Volume 11, 2019
Progress in Propulsion Physics – Volume 11
|
|
---|---|---|
Page(s) | 571 - 590 | |
DOI | https://doi.org/10.1051/eucass/201911571 | |
Published online | 08 February 2019 |
A preliminary design study for an expander liquid oxygen turbopump
Airbus DS GmbH Munich 81633, Germany
In the recent years, Airbus DS GmbH started a turbopump initiative to buildup fundamental capabilities in analyzing and designing turbomachinery within a German national funded program “TARES.” Turbomachinery is widely used in different rocket propulsion systems and include such parts as pumps and turbines. Turbines are used for generating power required by pumps in order to feed the propellants to the thrust chamber. The paper is dedicated to present an overview about currently ongoing conceptual design activities of turbomachinery covering the main design phases like TPA (TurboPump Assembly) layout tradeoff; rotational speed selection with respect to efficiency and cavitation; flow path design techniques including blade profiling; computer-aided design (CAD) work; and preliminary structural analyses. This paper presents the main outcome applying the established design logic to a liquid oxygen (LOx) turbomachinery. The component is designed based on a dedicated specification for an expander cycle type engine. This includes a LOx pump unit comprising inducer and impeller as well as a subsonic single stage reaction turbine. For the turbine drive, gaseous hydrogen (GH2) heated within the thrust chamber cooling circuit is used. Within this paper, a general overview about the preliminary work results of pump and turbine sizing, profiling, performance estimation as well as structural aspects is given.
© The Authors, published by EDP Sciences, 2019
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.