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¦xed during the continuation procedure. For the application of the continuation
method, it is necessary to know some starting point on the curve. In this study,
a random search of such points is used.

3.3 Results for the Study of Tumbling

Figure 2 shows the trajectories of periodic rotations, describing stationary tum-
bling solutions in system (1) for di¨erent elevator de§ections in the range −25◦
< δe < 25◦ with step 4◦ for the following parameters: §ight altitude H
= 12 000 m, aircraft center of gravity displacement –x/�c = −0.05 relative the
basic value x/�c = 0.275, thrust value T = 43.1 kN. The thrust value corresponds
to the level §ight at this altitude with the total velocity V = 100 m/s. Figure 3
shows maximum and minimum values of these rotations and their period T de-
pending on the elevator de§ection. This ¦gure shows also the similar results
for center of gravity displacement –x/�c = −0.02. The calculated rotations are
stable only in the range of elevator de§ections: 18◦�25◦ at –x/�c = −0.05 and
24◦�25◦ at –x/�c = −0.02 (they are shown by large markers).

Figure 3 Maximum and minimum values of periodic rotation trajectories and their
period depending on elevator de§ection, q < 0

94



AERODYNAMICS

Figure 4 Periodic rotation trajectories depending on elevator de§ection, q > 0

The parameter dependent boundary-value problem (4) has the similar solu-
tions corresponding to rotations with pitch rate q < 0. Figure 4 shows α and q
components of this solutions for the same grid in the parameter δe and the same
§ight parameters as in Fig. 2. All these periodic rotations are unstable.

The fact of instability of periodic solutions at most physically admissible
parameters means that the considered aircraft has no tendency to tumbling.
Nevertheless, large disturbances can lead to one or several aircraft turns. It is
important to calculate the boundaries of such tumbling motion, i. e., to ¦nd the
initial conditions for which at least one turn occurs. For estimation of the do-
mains of tumbling, note that total velocity is practically constant during a turn.
This allows considering this problem for a short-period approximation of the
longitudinal motion.

To determine the parameters of tumbling onset, a grid in (α�q) plane with
a su©ciently small step was used. Nodes of this grid were used as initial condi-
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Figure 5 Domains of tumbling, stable periodic rotation, and example of trajectory
originated in the region of tumbling at H = 12 km; V = 100 m/s; –x/c = −0.05;
and δ = 0◦ (a) and −30◦ (b)

tions for simulation of the short-

Figure 6 Domains of tumbling, stable peri-
odic rotation, and example of trajectory origi-
nated in the region of tumbling at H = 12 km;
V = 100 m/s; –x/c = −0.1; and δ = −30◦

period approximation of sys-
tem (1). If the outgoing trajec-
tory reaches angle of attack equal
to +180◦ or −180◦ at least once,
the point is marked as belonging
to the tumbling domain. Other-
wise, there is no tumbling. Fig-
ures 5 and 6 show the areas of
tumbling for several values of the
parameters: center of gravity po-
sition and elevator de§ection.
Several trajectories including tra-
jectories of periodic rotations are
also shown in these ¦gures.

Numerical simulation shows that regions tumbling absence in the (α�q) plane
are convex. This allows to formulate the tumbling onset problem as follows: for
each α value, ¦nd such a minimal (in absolute value) q that the boundary-value
problem

α(T ) = π

has a solution and ¦nd such a minimal q that the boundary-value problem

α(T ) = −π

has a solution. The above problem formulation allows calculating the tumbling
boundaries at a lower cost than the direct scanning. The results of application
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Figure 7 Tumbling boundaries depending on total velocity at H = 12 km; –x/c
= −0.05; and δ = 0◦: 1 ¡ V = 110 m/s; 2 ¡ 75; and 3 ¡ V = 50 m/s

Figure 8 Trajectories near the tumbling boundary: 1 ¡ q(0) = 0.87q0 circle; and 2 ¡
q(0) = 0.86q0 circle
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of this algorithm of computing the tumbling boundaries are shown in Fig. 7.
Trajectories near the calculated tumbling boundary are illustrated in Fig. 8.
Calculation of tumbling boundaries for the di¨erent aircraft and §ight parame-
ters has shown that the tumbling boundary moves to the less pitch rates with
increasing the §ight altitude, or decreasing the total velocity, or increasing for-
ward the aircraft center of gravity position.

4 CONCLUDING REMARKS

The problem of the tumbling boundaries of a generic wing-only aircraft has been
considered. With the use of continuation technique, periodic autorotation solu-
tions have been calculated. The in§uence of §ight altitude, total velocity, center
of gravity position, elevator displacement, and initial conditions has been ana-
lyzed. The investigation has shown that the minimum initial pitch rate resulting
in tumbling motion decreases with of §ight altitude increasing, total velocity de-
creasing, center of gravity position forward displacement, and elevator positive
de§ection.
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