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The problem of observer design for fault detection in a class of nonlin-
ear systems subject to parametric and signal uncertainties is studied.
The design procedure includes formalized optimization of observer free
parameters in terms of trade-o¨s for fault detection performance and ro-
bustness to external disturbances or model uncertainties. The technique
makes use of some monotonicity conditions imposed on the estimation
error dynamics. E©ciency of the proposed approach is demonstrated
through the Oscillatory Failure Case (OFC) in aircraft control surface
servoloops.

1 INTRODUCTION

Model-based Fault Detection and Isolation (FDI) in dynamical systems is an
active research area (for a recent survey, see [1,2]). An important focus has been
made on the use of observer-based schemes. In the linear case, it has been shown
that any linear fault detection ¦lter can be transformed into an observer-based
form [3], providing a uni¦ed framework for analysis and implementation [4 8].
From an estimation point of view, the problem of optimal noise ¦ltering for
stochastic linear systems has many solutions [9, 10]. For nonlinear systems, a
general framework does not exist, although numerical or suboptimal solutions
are available [11 13]. Typically, the observer design problem is solvable for a
canonical representation of nonlinear systems [14,15].
In this paper, an approach is developed for nonlinear fault detection observer

design, together with a procedure for parameter tuning. For the latter, the design
is made under monotonicity assumption [16] for the estimation error dynamic.
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PROGRESS IN FLIGHT DYNAMICS, GNC, AND AVIONICS

In this case, using an appropriate linear parameter varying (LPV) transforma-
tion [17 19], the design of minorant and majorant monotone linear systems is
possible, whose solutions create an envelope for the original system trajectories.
Solving an optimization problem for the minorant and majorant systems (the
solution is straightforward due to their linearity), it is possible to obtain a sub-
optimal solution for the original nonlinear system (a local optimality is ensured
when the system solutions converge to the minorant or majorant §ows). The
goal is to maximize robustness with respect to disturbances and sensitivity with
respect to faults.
In some cases, the faulty signal is known to belong to a speci¦c class of

signals (e. g., the harmonic functions of time with prede¦ned frequency range).
For example, in the ODC detection considered in [20], the faults are assumed to
be harmonic. Such a priori available information simpli¦es searched solution,
since speci¦ed techniques oriented on analysis of the harmonic input response
can be used for design of observer gains.
The following nonlinear system is considered:

‘x = Ax+GF(Hx,u+ f , θ) + Sv ; y = Cx+ d (1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
p are the system state, input, and output;

v ∈ R
v and d ∈ R

p are the state and the output disturbances; f ∈ R
m is the

faulty signal (unknown portion of the input); θ ∈ R
q is the vector of unknown

parameters; the matrices A, G, H, S, and C are known and constant having
appropriate dimensions; and the function F : R

l+m+q → R
g is continuously

di¨erentiable. The matrices G and H are introduced to take into account more
accurately the in§uence of nonlinearity on the system behavior. For simplicity
of presentation, the signal f is considered to act on the control signal as additive
disturbance. Such a restriction is motivated by the numerical example study
from aeronautic ¦eld in section 6. However, the approach can be applied to
multiplicative faults also. Assume that all input signals u, f, v, and d are
(Lebesgue) measurable and essentially bounded, i. e.,

‖ f ‖ ess sup
t≥0
|f(t)| < +∞ .

The objective is to design an observer for (1) using the available noisy mea-
surements y and the input u, and ensuring robustness with respect to the un-
certain parameters θ and the signals v and d. Moreover, for fault detection, it is
required to ¦nd the observer gains maximizing sensitivity of the output estima-
tion error with respect to f and robustness with respect to v and d. Note that
if the fault detection problem is not of interest, then f can be considered as an
additional unknown input.
Two solutions of this problem are presented below. One is more conventional

and it is based on LMIs veri¦cation (see section 4). It is shown that optimization
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in this framework is complicated. Another solution is the main contribution of
the work, and it utilizes the monotone system routine for analysis and optimiza-
tion (see section 5).
The paper is organized as follows. Preliminaries are given in section 2. The

observer equations are introduced in section 3. Stability conditions based on
LMIs are presented in section 4 (the optimization possibilities of this approach
are also discussed). An alternative approach (monotone system theory) for the
observer stability analysis and the new optimization technique are given in sec-
tion 5. In section 6, the overall approach is illustrated through its application to
OFC detection in aircraft control surface servoloops.

2 PRELIMINARIES

This section introduces some basic notions about monotone systems and LPV
representation of nonlinearities.

2.1 Linear Parameter Varying Representation of Nonlinear
Functions

For any two vectors p and p′ of the same dimension, let de¦ne

L(p,p′) = {λp+ (1 − λ)p′ , 0 ≤ λ ≤ 1}
(the line connecting the points p and p′). Since the vector valued function F
in (1) is continuously di¨erentiable, then according to the Mean Value Theorem,
for any h,h′ ∈ HX , u,u′ ∈ U ∪ F , θ,θ′ ∈ Ÿ, there exist ηhj ∈ L(h,h′), ηuj
∈ L(u,u′), ηθj ∈ L(θ,θ′), j = 1, g such that

F(h,u,θ)− F(h′,u′,θ′) = –x(h− h′) + –u(u− u′) + –θ(θ − θ′) ;

–x,j =
∂Fj(ξ,v,q)

∂ξ

∣
∣
∣
∣
∣
ξ=ηx

j ,v=ηu
j ,q=ηθ

j

; –u,j =
∂Fj(ξ,v,q)

∂v

∣
∣
∣
∣
∣
ξ=ηx

j ,v=ηu
j ,q=ηθ

j

;

–θ,j =
∂F(ξ,v,q)

∂q

∣
∣
∣
∣
∣
ξ=ηx

j ,v=ηu
j ,q=ηθ

j

, j = 1, g

where the symbols –x,j, –u,j , –θ,j denote the jth row of the corresponding
matrix.
The application of this technique gives an exact equivalent LPV represen-

tation of a nonlinear function. It is not a linearization around a single point
(or around a trajectory) since the above expression is an equality. The LPV
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approach allows to transform nonlinear models to the linear ones depending on
unknown parameters –x, –u, and –θ. Therefore, the complexity of the nonlin-
ear model (1) can be replaced with enlarged parametric uncertainty of a linear
one. This tool will be applied in the next section to analyze the estimation error
dynamics of the observer.

2.2 Monotone System Theory

The system
‘x = f(t,x) , x ∈ X , t ≥ 0 ,

with the solution x(t,x0) for the initial condition x(0) = x0 is called monotone,
if x0 ≤ ξ0 ⇒ x(t,x0) ≤ x(t, ξ0) for all t ≥ 0 [16] (for the vectors x0 and ξ0, the
inequality x0 ≤ ξ0 is understood elementwise). The system is called cooperative
if ∂fi(t,x)/∂xj ≥ 0 for all 1 ≤ i �= j ≤ n, t ∈ R and x ∈ X [16]. Cooperative
systems form a subclass of monotone ones. A matrix A with dimension n × n
is called Metzler if Ai,j ≥ 0 for all 1 ≤ i �= j ≤ n. Note that for the cooperative
stable system (the matrix A is Metzler and Hurwitz),

‘s(t) = As(t) + r(t) , s ∈ Rn , r ∈ Rn , t ≤ 0 ,
the properties s(0) ≥ 0, r(t) ≥ 0 for all t ≥ 0 imply s(t) ≥ 0 for t ≥ 0 and,
conversely, s(0) ≤ 0, r(t) ≤ 0 for all t ≥ 0 ensures s(t) ≤ 0 for t ≥ 0. The system
is called competitive if ∂fi(t,x)/∂xj ≤ 0 for all 1 ≤ i �= j ≤ n, t ∈ R and x ∈ X ;
in backward time, the competitive systems behave like the cooperative ones [16].

3 ROBUST OBSERVER EQUATIONS

This section is based on the following assumption.

Assumption 1. Let the compact sets X ⊂ R
n, U ⊂ R

m, F ⊂ R
m, V ⊂ R

v,
D ⊂ R

p, and Ÿ ⊂ R
q be given such that for almost all t ≥ 0,

x(t) ∈ X ; u(t) ∈ U ; f(t) ∈ F ; v(t) ∈ V ; d(t) ∈ D ; θ ∈ Ÿ .

Such constraints are rather common in nonlinear observer design theory stat-
ing that the system (1) has bounded inputs and the state with some known upper
bounds.
Consider the following Luenberger type observer for (1):

‘z = Z(z,y,u) = Az

+GF[Hz+ L2(y −Cz),u+ L3(y −Cz), θ∗ + L4(y −Cz)] + L1(y −Cz) (2)
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where z ∈ R
n is the estimate of the state x; Li, i = 1,4, are the observer gains to

be designed; and θ∗ ∈ Ÿ is a supporting ¦xed value for the vector of unknown
parameters. In (2), the output injection term is introduced for all arguments of
the nonlinear function F. The gain L1 is standard, it is used to ensure stability of
the pure linear part of the estimation error e = x−z dynamics. The gain L2 has
been proposed in [21] in order to improve the robustness abilities of (2) and to
relax restrictiveness of the LMIs used for the observer design. The gains L3 and
L4 have been introduced in [22] to improve robustness of the system with respect
to v, d, θ and sensitivity with respect to f . These gains have to be assigned to
guarantee (or to ¦nd a trade-o¨) the system stability and performance, and to
satisfy the required estimation and fault detection speci¦cations.
To apply the LPV technique below, the observer (2) has to be equipped with

a projection algorithm ensuring that z(t) belongs to the set X for all t ≥ 0:

‘z = proj
X
{Z(z,y,u)} , (3)

the equations of the projection algorithm can be found in [23] (smooth projec-
tion).
From (1) and (2), the estimation error -+e dynamics can be given by:

‘e = Ax+GF(Hx,u+ f ,θ) + Sv −Az
−GF[Hz+ L2(y −Cz),u+ L3(y −Cz),θ∗ + L4(y −Cz)]− L1(y −Cz)

= (A− L1C)e− L1d+ Sv
+G{F(Hx,u+ f ,θ)−F[Hz+L2(y−Cz),u+L3(y−Cz),θ∗+L4(y−Cz)]} .

Under Assumption 1 with z ∈ X due to (3) and applying the LPV transfor-
mation method, it can be shown that there exist some maps –x : R → R

g×l,
–u : R→ R

g×m, and –θ : R→ R
g×q such that for all t ≥ 0,

F(Hx,u+ f ,θ)− F[Hz+ L2(y −Cz),u+ L3(y −Cz),θ∗ + L4(y −Cz)]
= –z(t)[(H− L2C)e− L2d] + δu(t)[f − L3Ce− L3d]

+ –θ(t) [θ − θ∗ − L4Ce− L4d] .

The exact values of the matrix functions –x(t), –u(t), and –θ(t) are un-
known, but the set of admissible values is known (the values of the function F
gradient on X , U , F , V , D, and Ÿ ⊂ R

q), i. e., there are the known sets of
matrices œx, œu, and œθ such that –x(t) ∈ œx, –u(t) ∈ œu, –θ(t) ∈ œYθ for
all t ≥ 0.
Having enabled the projection algorithm (3), an LPV transformation can be

applied to the equation of estimation error dynamics:
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‘e = {(A− L1C) +G[–x(t)(H− L2C)−–u(t)L3C−–θ(t)L4C]} e
− {L1 +G[–x(t)L2 +–u(t)L3 +–θ(t)L4]}d

+ Sv +G{–u(t)f +–θ(t)[θ − θ∗]} . (4)

Remark. As it can be concluded from (4), the in§uence of the measurement noise d
is hard to attenuate since the multiplicative gain for this input is proportional to the
sum of all Li, i = 1, 4. However, robustness with respect to the inputs v and f and
the parametric mismatch θ− θ∗ can be augmented by a proper choice of the gains Li,
i = 1, 4 (the same with the sensitivity with respect to f).

In the following sections, two techniques are presented for stability analysis
of (4) and performance improvement in (2) and (3) as well.

4 STABILITY CONDITIONS BASED ON LINEAR
MATRIX INEQUALITIES

Denote the identity matrix with dimension n × n by In and state the symbols
λmax(P) and λmin(P) for the maximal and minimal eigenvalues of a square ma-
trix P.

4.1 Stability Conditions

Theorem 1. Assume that

(1) assumption 1 is satis¦ed ;

(2) there exist matrices Wx,Wu, and Wθ such that

τx–Tx–x −–TxWx −WT
x–x − αxIg ≤ 0 ;

τu–Tu–u −–TuWu −WT
u–u − αuIg ≤ 0 ;

τθ–Tθ–θ −–TθWθ −WT
θ–θ − αθIg ≤ 0

for all –x ∈ œx, –u ∈ œu, and –θ ∈ œθ and some real τx, τy , τθ, αx, αu,
and αθ; and

(3) the gains Li, i = 1, 4 for some P = PT > 0 admit the matrix inequality:

Y =

⎡

⎢
⎢
⎣

(A− L1C)TP+P(A − L1C) PG −PG −PG
GTP 0 0 0
−GTP 0 0 0
−GTP 0 0 0

⎤

⎥
⎥
⎦
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≤

⎡

⎢
⎢
⎣

Z −(H− L2C)TWT
x −(L3C)TWT

u −(L4C)TWT
θ

−Wx(H− L2C) τxIg 0 0
−WuL3C 0 τuIg 0
−WθL4C 0 0 τθIg

⎤

⎥
⎥
⎦

where

Z = −νIn−αx(H−L2C)T(H−L2C)−αu(L3C)T(L3C)−αθ(L4C)T(L4C) .

Then, in (1) (3) for all t ≥ 0, one has :

|e(t)| ≤ κ
{
|e(0)|e−0.25νλ−1max(P)t

+ 4ν−1
(√

λd‖d‖+
√
λs‖s‖+

√
λf‖f‖+

√
λθ|θ − θ∗|

)}

where

λs = λmax
(
STPPS

)
; λf = max

–u∈œu

λmax
(
–TuG

TPPG–u
)
;

λd = max
–x∈œx,–u∈œu,–θ∈œθ

(
{L1 +G [–xL2 +–uL3 +–θL4]}TPP {L1

+G [–xL2 +–uL3 +–θL4]}
)
;

κ =

√
λmax(P)
λmin(P)

; λθ = max
–θ∈œθ

λmax
(
–TθG

TPPG–θ
)
.

P r o o f . The projection algorithm ensures the trajectories boundedness in the
large (z(t) ∈ X for all t ≥ 0). Let analyze the error dynamics (4) into the set X
using the Lyapunov function V(e) = eTPe:

‘V = eT
[
(A− L1C)TP+P(A− L1C)

]
e

+ 2eTP {G [–x(t)(H− L2C)−–u(t)L3C−–θ(t)L4C]} e
− 2eTP {L1 +G [–x(t)L2 +–u(t)L3 +–θ(t)L4]}d

+ 2eTPSv + 2eTPG {–u(t)f +–θ(t)[θ − θ∗]} .

For ρ(t, e) = [e –x(t)(H− L2C)e –u(t)L3Ce –θ(t)L4Ce]T, applying some
algebra, one gets:

‘V = ρ(t, e)TYρ(t, e)− 2eTP {L1 +G[–x(t)L2 +–u(t)L3 +–θ(t)L4]}d
+ 2eTPSv + 2eTPG {–u(t)f +–uθ(t)[θ − θ∗]} .
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Using the matrix inequality for Y introduced in the theorem, one obtains:

ρ(t, e)TYρ(t, e) ≤ eT {−νIn + (H− L2C)T
[
τx–Tx (t)–x(t)−–Tx (t)Wx

−WT
x–x(t)− αxIg

]
(H− L2C) + (L3C)T

[
τu–Tu (t)–u(t)

−–Tu (t)Wu −WT
u–u(t)− αuIg

]
(L3C) + (L4C)T

[
τθ–Tθ (t)–θ(t)

−–Tθ (t)Wθ −WT
θ –θ(t)− αθIg

]
(L4C)

}
e .

Substitution of the inequalities forWx,Wu, andWθ gives

ρ(t, e)TYρ(t, e) ≤ −νeTe ,
then

‘V ≤ −νeTe− 2eTP {L1 +G [–x(t)L2 +–u(t)L3 +–θ(t)L4]}d
+ 2eTPSv + 2eTPG {–u(t)f +–θ(t)[θ − θ∗]}

≤ −0.5νeTe+ 8ν−1 (λddTd+ λssTs+ λf fTf + λθ[θ − θ∗]T[θ − θ∗]
)
.

That provides the estimate on the error e behavior and terminates the proof. �
Remark. The condition on existence of the matrices Wq, q ∈ {x, u, θ}, looks like
hard to satisfy; however, it can be easily ful¦lled under certain structural restrictions
imposed on F. For example, this condition is always true forWq = 0 and some τq and
αq such that τq–Tq –q ≤ αqIg , q ∈ {x, u, θ} (introduction of Wq �= 0 may relax the
conservatism of LMI). Additionally, the conditions forWq, q ∈ {x, u, θ}, have the form
of Lyapunov inequalities and for interval sets œq, their solutions can be obtained by a
conventional LMI-based routine. Next, if for all Fj , j = 1, g, the partial derivatives are
sign de¦nite elementwise, then it is possible to ¦nd someWq such that for all –q ∈ œq,
the inequalities are true:

–TqWq +W
T
q –q ≥ 0 , q ∈ {x, u, θ} , (5)

then the Theorem 1 condition holds for τq = αq = 0 (if the inequalities (5) are strict,
then αq = 0 only); in these cases, the theorem conditions are reduced to LMI checking.

4.2 Performance Optimization

The estimate derived in Theorem 1 gives some hints on possible performance
optimization for the observer (2). For example, minimization of the value κ/ν
improves overall accuracy of estimation. The value λmax(P) regulates the rate
of the system convergence. Additional minimization of the values λν , λθ, and
λd allows to increase robustness margins of the estimation error dynamics with
respect to corresponding variables. Simultaneous maximization of the value λf
ensures improvement of the sensitivity with respect to f . The obtained expres-
sions for these coe©cients indicate that their parallel optimization is not possible
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and a trade-o¨ has to be found. Since such optimization is based on an upper
estimate tuning, it does not provide an optimal solution (the conversation is
about a suboptimal one).
The above discussion on the coe©cients λν , λθ, λf , and λd optimization

reveals that it is rather hard to optimize robustness of the system with respect
to all variables v, θ, and d with simultaneous improvement of sensitivity with
respect to the faults f . Additionally, such an adjustment needs application of
the nonlinear optimization routine. In the following section, the focus will be
on particular cases (robustness with respect to v or sensitivity to harmonic
signals f).

5 MONOTONE SYSTEM APPROACH

Another approach for stability analysis and performance optimization is based on
the system (4) reduction to linear majorant and minorant systems using mono-
tone system techniques, with posterior solution of the optimization problem for
these linear simpli¦ed systems. To apply the monotone systems theory, rewrite
Eq. (4):

‘e = “A(t)e+w(t) (6)

where

“A(t) = (A− L1C) +G[–x(t)(H− L2C)−–u(t)L3C−–θ(t)L4C] ;
w(t) = −{L1 +G[–x(t)L2 +–u(t)L3 +–θ(t)L4]}d(t)

+ Sv(t) +G {–u(t)f(t) + –θ(t)[θ − θ∗]} .

Under Assumption 1, the signal w is bounded (‖w‖ < +∞)) as well as the
matrix function of time “A.

Assumption 2. Let the matrix (A−L1C)+G[–x(H−L2C)−–uL3C−–θL4C]
be Metzler for all –x ∈ œx, –u ∈ œu, and –θ ∈ œθ, all elements of C have the
same sign.

Assumption 2 means that the system (6) is monotone and the above men-
tioned theory can be applied to their analysis and optimization. This assumption
can be relaxed assuming existence of a linear transformation e = Xε, such that
in the new coordinates ε, the matrix X−1 “A(t)X be Metzler for all –x ∈ œx,
–u ∈ œu, and –θ ∈ œθ. This relaxation is technical and skipped here for
brevity of presentation. The matrix C has positive elements in a conventional
case C = [1 0 . . . 0]; thus, this condition is also a question of coordinate trans-
formation.
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5.1 Stability Conditions

Theorem 2. Let Assumptions 1 and 2 hold. Let the gains Li, i = 1, 4 be chosen
to satisfy the elementwise constraint

(A− L1C) +G[–x(H− L2C)−–uL3C−–θL4C] ≤ A
for all –x ∈ œx, –u ∈ œu, and –θ ∈ œθ, where A = (A − L1C) +G[–x(H
− L2C) − –uL3C − –θL4C] is Metzler and Hurwitz for some matrices –k,
k ∈ {x, u, θ}.
Then, in (1) and (2), the estimation error e stays bounded for all t ≥ 0.

P r o o f . Introduce the following auxiliary dynamical systems (they will be used
for analysis purposes only):

‘er = Aer +wr(t) , r ∈ {m,M} , −∞ < wm(t) ≤ wM (t) < +∞ ,

wm(t) ≤ 0 ≤ wM (t) , (7)
for all t ≥ 0, where er ∈ R

n, r ∈ {m,M}, and the initial conditions are em(0)
≤ e(0) ≤ eM (0), em(0) ≤ 0 ≤ eM (0) (all vector inequalities are understood
elementwise). Since the matrix A is Hurwitz and ‖wr‖ < +∞, r ∈ {m,M},
the variables er, r ∈ {m,M}, are bounded for all t ≥ 0. Moreover, eM (t) ≥ 0,
em(t) ≤ 0 for all t ≥ 0 for Metzler matrix A and sign de¦nite initial conditions
and input signals wr, r ∈ {m,M}. De¦ne two relative errors εM = eM − e and
εm = e− em, then

‘εM = AeM − “A(t)e+wM (t)−w(t)
= “A(t)εM + [A− “A(t)]eM + [wM (t)−w(t)] ;

‘εm = “A(t)e−Aem +w(t) −wm(t)
= “A(t)εm + [ “A(t)−A]em + [w(t) −wm(t)] .

By Assumption 2, the matrix “A(t) is Metzler for all t ≥ 0 and the signals
[A− “A(t)]eM + [wM (t)−w(t)], [ “A(t)−A]em+ [w(t)−wm(t)] are elementwise
positive for all t ≥ 0; therefore, the variables εM (t) and εm(t) are also positive
for all t ≥ 0 since εM (0) ≥ 0 and εm(0) ≥ 0. Indeed, if there exists a coordinate
εri (t), i ∈ {1, n}, r ∈ {m,M}, approaching zero for some t ≥ 0, then necessarily
‘εri (t) ≥ 0 from the conditions above that prevents change of the sign. Thus,
em(t) ≤ e(t) ≤ eM for all t ≥ 0 due to positivity of εM (t) and εm(t) that
implies e boundedness. �
It follows from Theorem 2 that under the monotonicity Assumption 2, the

matrix inequalities from Theorem 1 can be replaced with some simple additive
linear matrix constraints. The projection algorithm (3) becomes redundant in
this case.
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5.2 Performance Optimization

To formulate the optimization criteria, the following de¦nitions are needed. Let
γ : R+ → R+ be the stability margin gain (that is, a nonlinear counterpart of
H∞ gain [24]) for the estimation error e with respect to the input v, i. e.,

lim
t→+∞ |e(t)| ≤ γ(‖v‖) .

For any f(t) = εα sin(ωt), ε = [1 . . . 1]T ∈ R
m and some α > 0, ω > 0, let

ν : R
2
+ → R+ be the output frequency response map for (1) and (2) (see [25] for

such function de¦nition for the class of convergent systems; for generic case, such
type of maps can be introduced using the theory of Cauchy gains and asymptotic
amplitudes [26]), i. e.,

lim
t→+∞ |Ce(t)| ≤ ν(α, ω) .

Corollary 1. Let conditions of Theorem 2 hold, then

γ(‖v‖) ≤ |A−1
S‖v‖ , ν(α, ω) ≤ α max

r∈{m,M}
|W r(iω)|

where Si,j = |SI,j |, i = 1, n, j = 1, ν; W r(s) = C(Ins − A)−1Gr, GM

= max
{

sup
–u∈œu

G–u, − inf
–u∈œu

G–u

}

, Gm = −GM .
P r o o f . Systems (7) determine the asymptotic behavior for (1) and (2) (the
estimation accuracy bounds) and the limit quality of transients. These upper
and lower bounds can be exact in the cases when “A(t)→ A and w(t)→ wr(t),
r ∈ {m,M}. Systems (7) are linear, their robustness and sensitivity analysis is
simple and numerically tractable. For a linear system (due to the superposition
principle), its response to di¨erent inputs can be analyzed independently.
The input w depends on v in linear fashion with the constant gain S, then in

the signals wr, r ∈ {m,M}, this term can be taken into account as Srv(t) where
Smi,j = −|Si,j|, SMi,j = |Si,j |, νj = |νj |, i = 1, n, j = 1, ν. For linear systems ‘er
= Aer+Srv(t), r ∈ {m,M}, one has lim

t→+∞ e
r(t) ≤ |A−1

Sr|‖v‖ ≤ |A−1
Sr|‖v‖.

Therefore, γ(‖v‖) ≤ |A−1
S|‖v‖, S = SM .

The harmonic input f in§uence on the signals wr, r ∈ {m,M}, can be
evaluated using the term Grf(t), r ∈ {m,M}, where

GM = max
{

sup
–u∈œu

G–u, − inf
–u∈œu

G–u

}

;

Gm = −GM ; fk(t) = α| sin(ωt)| , k = 1,m .

Then, the equations ‘er = Aer + Grf(t), r ∈ {m,M}, can be analyzed.
According to Assumption 2, the matrix C has all elements with the same sign;
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thus, Cem(t) ≤ Ce(t) ≤ CeM (t) for all t ≥ 0 with positive elements of C, the
reverse sign inequalities are satis¦ed for the negative elements of C. Therefore,
in system (1), (2), the output Ce response on the harmonic fault input f can be
estimated using the standard Bode magnitude plot:

ν(α, ω) ≤ α max
r∈{m,M}

|W r(iω)| , W r(s) = C(Ins−A)−1Gr , r ∈ {m,M} . �

This approach provides clear guidelines for performance optimization. In some
cases, an analytical solution can be obtained for minimization/maximization of

|A−1
Sr| and |W r(iω)|, r ∈ {m,M}. However, Assumption 2 could be rather

restrictive: ¦rst, it may fail in some applications; second, even being veri¦ed,
the system with nonmonotone dynamics may have better performance.

6 NUMERICAL EXAMPLE

In this section, the ideas presented in this paper are illustrated through ana-
lytical design of a harmonic oscillatory failure case detector in electronic §ight
control system [20]. These faults may result in an unwanted control surface os-
cillation, generating unacceptably high loads or vibrations on the aircraft struc-
ture. The capability to detect robustly and as fast as possible these failures
is very important because it has an impact on the structural design of the
aircraft. In this paper, only failures located in the servocontrol loop of the
moving surfaces is considered [20]. Habitually, such type of failure generates
spurious sinusoidal signals (mainly, due to electronic components) propagat-
ing through the servocontrol loop, leading to control surface oscillation (see
Fig. 1, where the structural scheme of servoloop is shown). The faulty com-
ponents may be located inside the §ight control computer, the analogue in-
puts/outputs, the position sensors, or the actuators. The §ight control com-
puter may also generate unwanted oscillations of the command current sent
to the actuator servovalve. The fault signals are considered to be sinusoidal
with amplitude and frequency uniformly distributed over the range 1 10 Hz
(above 10 Hz, the failure has no signi¦cant e¨ects because of the low-pass na-
ture of the actuator). The detection time is expressed in period numbers, thus
depending on the failure frequency, the time permissible for detection is vary-
ing.
The following actuator model is considered [20]:

‘x(t) = ϕ [yf(t)− x(t) + u(t) + f(t)] + ν(t) ;
yf(t) =Wf (p) [x(t) − u(t)− f(t)] ;
y(t) = x(t) + d(t)

⎫
⎪⎪⎬

⎪⎪⎭

(8)
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Figure 1 Structural scheme of the actuator servoloop

Figure 2 The actuator nonlinearity

where x ∈ R is the actuator rod position; u ∈ R is the control signal; y ∈ R

is the available measurement output; f ∈ R is the sinusoidal fault; ν and d are
the disturbances as before; yf is the output of a ¦lter; p is stated for the time
di¨erentiation operator; andWf (p) is the ¦lter transfer function. The function ϕ
and its derivative are given in Fig. 2; for simplicity, a high pass ¦lter is considered
in this work: Wf (p) = −Tp/(Tp+ 1), T = 10.
The model (8) can be presented in the form (1) introducing the following

functions and matrices:
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3A =
1
T

[
0 0
1 −1

]

; G =
[
1 0
0 T−1

]

; F(h, u) =
[
ϕ(h+ u)

u

]

;

S =
[
1
0

]

; H =
[−1
1

]T

; C =
[
1
0

]T

.

Assume that the sets required in Assumption 1 are given. Since the sys-
tem (8) has one nonlinearity only (the condition (5) is satis¦ed), after some
transformations the observer (2) can be presented as follows:

‘e1 = –(t)[e2 − e1 + f − (L2 + L3)(e1 + d)]− L11(e1 + d) + ν ;
‘e2 = T−1(e1 − f − e2)− (L12 − T−1L3)(e1 + d)

}

(9)

where – = ϕ′(ηh) and, according to Fig. 2, 0 ≤ –(t) ≤ ‘ϕmax = 18.11 for
all t ≥ 0. For the matrix P = I2, the estimate from Theorem 1 on the error
dynamics takes the form:

|e(t)| ≤ |e(0)|e−0.125t/T + 2
√
2

[√

‘ϕmax +
4
T
‖f‖+ ‖ν‖

+
(|L11 + ‘ϕmax{L2 + L3}|+ 2(L12 − T−1L3)

) ‖d‖
]

.

Thus, the gain before ‖d‖ is the only one available for optimization using the
observer gains tuning.
To apply Theorem 2, note that the system (9) is monotonous while

T−1(1− L3) ≥ L12. Under this constraint,

“A(t) =

[−L11 − (1 + L2 + L3)–(t) –(t)
T−1 − (L12 − T−1L3) −T−1

]

is a Metzler matrix for any 0 ≤ –(t) ≤ ‘ϕmax. Then,

A =
[ −L11 ‘ϕmax
T−1 − (L12 − T−1L3) −T−1

]

; Gm =
[− ‘ϕmax
T−1

]

; GM =
[
‘ϕmax
T−1

]

;

and A is Metzler. The matrix A is Hurwitz under proper choice of the gains
L11, L12, and L3. The analytical formulas for gains to be optimized are as
follows:
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|A−1
S| = γ(M1,M2) =

√

1 +M2
2

|M1 − ‘ϕmaxM2| ;

|WM (iω)| = β(ω,M1,M2) = ‘ϕmax
√
4 + T 2ω2

D(ω,M1,M2)
;

|Wm(iω)| = ‘ϕmaxTω
D(ω,M1,M2)

;

D(ω,M1,M2) =
√
ω2(1 +M1T )2 + (M1 − Tω2 − ‘ϕmaxM2)2

where M1 = L11 and M2 = 1− L12 + L3 are new tuning parameters. Note that
max

r∈{m,M}
|W r(iω)| = |WM (iω)| = β(ω,M1,M2) .

The values of γ(M1,M2) and β(ω,M1,M2) could be optimized numerically
for new set of planar parameters M1 and M2 taking in the mind the stability
of matrix A and the monotonicity constraint M2 ≥ 0. The following functional
has been chosen for minimization:

J(M1,M2) = κγ(M1,M2) +
1− κ

∑

ω∈Ÿf

β(ω,M1,M2)

where Ÿf = {1, 2, 3, 4, 5, 7} is the set of the

Figure 3 Performance functional
values

fault most important frequencies that could
happen; and 0 ≤ κ ≤ 1 is the weighting pa-
rameter. The contour plot of this functional
for κ = 0.3 is shown in Fig. 3, where the
left low uncolored corner corresponds to the
cases with unstable matrix A. The values
of the observer gains L11 = 12, L12 = 0.1,
L2 = 1, and L3 = 0.08 provide the mini-
mum of this functional.
These gains form a suboptimal solution

in the sense of the observer (2) response op-
timization. An example of the residual sig-
nal e1 obtained for these observer gains is
shown in Fig. 4 where for simulation, it was
used:

u = sin(t)+sin(0.2t)+cos(2t) ; ν(t) = sin(10t) ; f(t) =

{
0, if t ≤ 10;
0.2 sin(3t) , if t > 10.
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Figure 4 The results of simulation

Figure 5 The output residual in the ADDSAFE benchmark

This technique has been successfully veri¦ed on the OFC detection problem
in the European FP7 ADDSAFE project, the result of this algorithm operation
in the ADDSAFE benchmark is shown in Fig. 5.

For nonlinear systems, any type of optimization is a complex issue, even
choice of an optimizing functional corresponding to the posed performance goal
is a hard problem.

In this example, for instance, application of Theorem 1 does not provide
a hint how to evaluate the output estimation error sensitivity with respect to
harmonic faults. Theorem 2 provides one with a functional in a systematic way
that is a big advantage of the presented approach.
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7 CONCLUDING REMARKS

The problem of nonlinear observer design for fault detection with optimized
performance is studied. It is assumed that the plant model contains unknown
parameters and it is subjected by external disturbances and faults. Two ap-
proaches for observer design are presented. The ¦rst one is based on solution of
LMIs, its novelty consists in introduction of additional observer gains in the con-
ventional routine for LMI-based observer design. The additional observer gains
may be used for performance optimization. The second method uses monotonic-
ity assumption on the estimation error dynamics, it introduces a new tool to
design nonlinear observers. An advantage of the second approach is that it gives
a simple technique to tune the observer gains in order to optimize the fault
detection performance and robustness. E©ciency of the proposed approach is
demonstrated through the oscillatory failure case in aircraft surface servoloops.
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