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Investigated are the local §ows in the laminar boundary layers in the
vicinity of heating elements. On the basis of asymptotical analysis, math-
ematical models are formulated and similarity parameters are found.
Determined are the §ow parameters providing §ow control (separation,
transition). Presented are the results of numerical and analytical anal-
ysis. Another method of the §ow control is associated with the technol-
ogy of new materials development. For example, porous metals allow
use of passive control methods to in§uence boundary layer separation or
laminar�turbulent transition.

1 LOCAL SURFACE HEATING

Among di¨erent methods of boundary-layer §ow control, one of the mostly inves-
tigated now is a method associated with energy release due to electrical discharge,
surface heating, or cooling.
The aim of this paper is the analysis of possible application of the local

surface heating to determine response of the boundary-layer §ow and to ¦nd
optimal heating elements parameters.
It is supposed that on the surface of the body, there are located heated parts,

having temperatures di¨erent from the gas temperature in ambient boundary
layer §ow. Also, it is supposed that temperature di¨erence may change with
time. Practically, this method is easy to ful¦ll using electrically conducting
strips. An example of such method application is described in [1].
The most important factor due to energy release (surface heating) is density

change in the region in§uenced by the heating. This region structure is con-
trolled by the convection and thermal conductivity processes. At the same time,
density change (diminishing due to temperature rise) will change boundary-layer
thickness. Situation is similar to the local §ow nearby local surface distortion,
but in the present case, e¨ective surface distortion is created due to temperature

Progress in Flight Physics 3 (2012) 483-490 
© Owned by the authors, published by EDP Sciences, 2012

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, 
which permits unrestricted use,  distribution,  and reproduction in any noncommercial medium,  provided the original work is 
properly cited.

Article available at http://www.eucass-proceedings.eu or http://dx.doi.org/10.1051/eucass/201203483

http://www.eucass-proceedings.eu
http://dx.doi.org/10.1051/eucass/201203483


PROGRESS IN FLIGHT PHYSICS

(density) change. The di¨erence is that the distortion shape is not known before-
hand but is formed due to energy release in the boundary layer and due to the
region with smaller density formation. Previous analysis of the disturbed §ow
nearby local surface distortion allowed to develop corresponding mathematical
problems and to ¦nd distortion parameters in§uencing boundary layer §ow [2].
In the paper, the corresponding asymptotical analysis is applied to analyze

energy release in§uence on the separation of the boundary layer §ow along with
the in§uence on the boundary layer §ow instability.
Investigated are the local §ows in the laminar boundary layer nearby heating

elements located on the surface and §ows near porous surface. On the basis of
asymptotic analysis, mathematical models are derived and similarity parameters
are found. Described are unsteady local heating regimes providing boundary-
layer separation and laminar�turbulent transition control. Presented are numer-
ical and analytical results.
At the present time, intensive investigations are conducted associated with

new methods of boundary-layer control due to energy release. The energy source
can be due to the electrical discharge, surface heating or cooling. Along with
these methods, mechanical devices are analyzed, so-called MEMS (microelec-
tromechanical systems), or methods associated with suction or injection. Appli-
cation of such methods allows suppressing boundary-layer separation to change
boundary-layer transition position along with the in§uence on the turbulent
boundary-layer parameters.
This paper is aimed at the analysis of possible regimes of local surface heating

to determine arising disturbances in the boundary layers. It is supposed as well
to formulate corresponding mathematical problems and to determine similarity
parameters. Analogous analysis is done for disturbed §ows near porous surface.
It is supposed that on the streamlined surface, there are located parts having

temperature which di¨ers from the temperature of an ambient gas. It is supposed
as well that this temperature depends on time. Practically, it is easy to ful¦ll
such method of control having conducted wires or strips and using electrical
current for local heating [1].
Let us consider physical aspects of such §ows. The most important factor

associated with the surface heating is gas density change in the region where
energy release in§uence is signi¦cant. Dimensions of this region are determined
by convection and heat conduction processes. Temperature increase will lead to
the density decrease which will change boundary-layer thickness. This change
may induce in the external inviscid §ow corresponding pressure disturbances.
Situation is very similar to the §ow in the boundary layer with the surface dis-
tortions. The main di¨erence is that, in the considered case, geometry of surface
distortions is not known beforehand but is determined by energy release and by
corresponding decreased density region formation. Flow analysis in the bound-
ary layer disturbed by an abrupt change of surface temperature and catalytic
properties distribution is presented in [3�5].
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For the subsequent analysis, the results of [4, 6�8] were used in which local
surface distortions located on the bottom of the surface were analyzed. It is
supposed that the Reynolds number is large but does not exceed the critical
value corresponding to the laminar�turbulent transition. Subsequent analysis
is based on the derivation of estimates of possible physical mechanisms and
similarity parameters determination.

Considered is the supersonic or subsonic viscous gas §ow near a §at semiin-
¦nite plate. It is supposed that the Reynolds number is large but is subcritical
corresponding to the laminar §ow

Re =
ρ∞u∞l

µ∞

= ε−2 → ∞

where ρ∞, u∞, and µ∞ are the density, longitudinal velocity, and dynamical vis-
cosity coe©cient in undisturbed §ow over the region where heated part of plate
is located; and l is the distance from a leading edge to a zone of energy release.
The next nondimensional values are chosen for the Cartesian coordinates, veloc-
ity vector components, density, pressure, and dynamical viscosity coe©cient: xl,
yl, zl, lu−1∞ t, u∞u, u∞v, u∞w, ρ∞ρ, u

2
∞R

−1T , µ∞µ.

In general case, it is supposed that temperature change in the local region is
¦nite –T ∼ T ∼ O(1), and the region of increased temperature is characterized
by the longitudinal size a ≤ O(1), transversal size b ≤ O(1), and characteristic
time of temperature change O(τ).

Undisturbed §ow is two-dimensional (2D) and steady but disturbed §ow is
supposed to be unsteady and three-dimensional (3D). Preliminary analysis is
conducted for 2D §ow and then results are generalized for 3D §ows.

Following the method of matched asymptotic expansions [7], at the beginning,
let consider the region having identical sizes comparable with the body length:
x ∼ y ∼ z ∼ O(1). For large Reynolds number, the §ow in this region is
described by the Euler equations. For the §at plat having zero angle of attack
and zero thickness, these equations solution is a solution describing undisturbed
§ow. To ful¦ll no-slip conditions, it is necessary to introduce boundary layer ¡
region located nearby the surface and having the following sizes: x ∼ z ∼ O(1)
and y ∼ O(ε).

Local surface heating can lead to the e¨ective distortion formation, thickness
of which can be evaluated using longitudinal impulse equation.

Surface temperature change will cause corresponding gas density change in
the layer located nearby the surface –ρ ∼ ρ ∼ O(1). If the Prandtl number
is ¦nite: Pr ∼ O(1) in general case, it may be deduced that thickness of local
viscous layer and thickness of temperature conducting layer are comparable. In
the near-wall layer, longitudinal velocity is proportional to the distance from
the wall y/ε: u ∼ O(y/ε). If values of convective and di¨usion terms in the
longitudinal momentum equation have the same order, then the next estimate
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can be obtained for the thickness of local layer as a function of its longitudinal
size a:

y ∼ O
(
εα1/3

)
≤ O(ε) .

Subsequent analysis depends on the longitudinal size of heated part of the sur-
face. At least three di¨erent regimes described by di¨erent mathematical models
may be formulated.
The ¦rst one corresponds to the longitudinal size smaller than the boundary

layer thickness. If the sizes of the disturbed region have the same order:

α ∼ O
(
εα1/3

)
, α ∼ ε3/2 ,

one will get the disturbed region where the §ow is described by Navier�Stokes
equations with boundary conditions taking into account rare¦ed gas e¨ects (slip
conditions). Characteristic time in this region has the following order: τ ∼ ε−1.

For relatively larger sizes of the heated part α2Re3/2 = Re1 → ∞, the dis-
turbed §ow will be described by so-called equations for compensation regime [8].
This regime will exist for length comparable with the boundary-layer thickness
as well as for larger sizes but lesser than the length scale comparable with the
so-called free interaction scale. Corresponding to this regime,

a ∼ O
(
ε3/4

)
; –y ∼ O

(
ε5/4–T

)
; –p ∼ O

(
ε1/2–T

)
.

The corresponding mathematical problem can be written as follows

Sh2
∂ub
∂tb
+ ub

∂ub
∂xb
+ vb

∂ub
∂yb
+š1wb

∂ub
∂zb
+ Tb

∂pb
∂xb
=
∂2ub

∂y2b
;

Sh2
∂wb
∂tb
+ ub

∂wb
∂xb
+ vb

∂wb
∂yb
+š1wb

∂wb
∂zb
+ Tb

∂pb
∂zb
=
∂2wb

∂y2b
;

Sh2
∂Tb
∂tb
+ ub

∂Tb
∂xb
+ vb

∂Tb
∂yb
+š1wb

∂Tb
∂zb
=
∂2Tb

∂y2b
;

∂ub
∂xb
+
∂vb
∂yb
+
∂wb
∂zb
= 0 ;

ub(xb, 0, zb, tb) = wb(xb, 0, zb, tb) = vb(xb, 0, zb, tb) = 0 ;

Tb(xb, 0, zb, tb) = Tw(xb, zb, tb) ;

ub → yb + d ; d1 =

∞∫

0

(1 − T1) dη + d ;

T1(x,∞)→ 1 ; yb → ∞ ;

d(−∞)→ 0 ; Pb(xb, t) = −B2
∂d1
∂xb

.
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Figure 1 Induced pressure distribution

This problem was numerically solved. Numerical results were obtained for the
following surface temperature distribution

Tw (|xb| ≤ 0.5, t) = 1 + (1− exp(−t))
(
0.25− x2b

)
;

Tw (|xb| > 0.5, t) = 1 ; B2 = 1 .

In Fig. 1, induced pressure distribution is presented: pb(xb, t→ ∞) for large
time values.

2 FLOWS NEAR POROUS WALLS

Porous wall structure means that due to pressure di¨erence on the external
and internal sides of porous surface can lead to the distributed suction (in the
regions of relatively high pressure) or distributed injection. In many cases, it
can be supposed that mass transfer obeys the Darsy law (or linear dependence
between vertical velocity on the wall and disturbed pressure distribution).
This boundary condition allows, in fact, to reconsider early obtained re-

sults [9�11] describing self-induced boundary-layer separation for the case of
passive §ow control.
Using results obtained in [9], mathematical problem for §ows near porous

walls can be formulated as follows:

u
∂u

∂x
+ v

∂u

∂y
+
∂p

∂x
=
∂2u

∂y2
;

∂u

∂x
+
∂v

∂y
= 0 ;

y = 0 : v = −βp , u = 0 ;

y → ∞ : u = y +A(x) ;

x→ −∞ : u = y ;

p = −∂A
∂x

.
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This problem di¨ers from the problems describing disturbed §ow near imperme-
able wall due to condition for the vertical velocity on the wall [9�11]. In fact,
such conditions are well known in §uid mechanics.
For small values of self-induced pressure, the following form of solution can

be considered:
u = y + u1 ; v = v1 ; p = p1 .

This form of solution gives the following form of equations for the ¦rst approxi-
mation:

y
∂u1
∂x
+ v1 +

∂p1
∂x
=
∂2u1

∂y2
;

∂u1
∂x
+
∂v1
∂y
= 0 .

As usual, the solution can be presented in the normal mode approximation:

(u1, v1, p1, A) = e
ax(U, V, P,B) ;

yαU + V + αP = U ′′ ;

U(∞) = B ; yαU ′ = U ′′′ .

After some transformations, an Airy equation can be obtained:

y = α−1/3Y ; U ′ = F ; Y F = F ′′

with the following solution:

F = CAi(Y ) ; F =
∂U

∂y
= α1/3

∂U

∂Y
; F =

∂U

∂Y
= Cα−1/3Ai(Y ) ;

U(∞) =
∞∫

0

F dY = Cα−1/3

∞∫

0

Ai(Y ) dY =
C

3α1/3
; P = −αB = −Cα

2/3

3
;

(α − β)P = α2/3U ′′
w = Cα

1/3Ai′(0) ;

−Cα
2/3

3
(α− β) = Cα1/3Ai′(0) .

Ley introduce new variables:

α1/3(α− β) = −3Ai′(0) ; α = δ3β .

Eventually, one obtains the following relation associating increment of growth
and wall velocity parameter β:

δ(δ3 − 1) = −3Ai
′(0)

β4/3
.
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The following two limits can be considered.
The ¦rst one corresponding to small porosity β → 0:

δ ≈
[
−3Ai

′(0)

β4/3

]1/4
≈ 1

β1/3
[−3Ai′(0)]1/4 .

Then, since α = δ3β, one gets:

α ≈ [−3Ai′(0)]3/4 .

The same result as in classical case (impermeable plate) [9] is obtained.
The second limit corresponds to large porosity β → ∞:

δ ≈ 1 , α ≈ β .

Large α values correspond to small length of disturbed region.
It is important that new boundary condition on the wall is linear in the

approximation considered; so, mathematical problem for linear regimes can be
considered as a uniform one.
To investigate stability problems, it is needed to consider unsteady mass

transfer regimes.

REFERENCES

1. Yurchenko, N., G. Voropaev, R. Pavlovsky, P. Vinogradsky, and A. Zhdanov. 2003.
Flow control using variable temperature boundary conditions. Proc. European
Fluid Mecahics Conference EFMC-2003. Toulouse, France.

2. Neyland, V.Ya., V.V. Bogolerov, G.N. Dudin, I. I. Lipatov, et al. 2007. Asymp-
totical problems of the supersonic viscous gas §ows. Elsevier. 456 p.

3. Sokolov, L.A. 1975. To the asymptotic theory of 2-D laminar boundary layer §ows
with the abrupt change of surface temperature. Tr. TsAGI 1650:18�23.

4. Gershbein, E. A., V.Yu. Kazakov, and G.A. Tirsky. 1986. Laminar boundary layer
development downstream from the point of abrupt change of surface catalytic prop-
erties. TVT 24(6).

5. Bogolepov, V.V., I. I. Lipatov, and L.A. Sokolov. 1990. Structure of chemically
nonequilibrium §ows in the vicinity of an abrupt change of temperature and cat-
alytic properties of the surface. PMTF 3:30�41.

6. Bogolepov, V.V., and V.Ya. Neyland. 1971. Flow near local surface distortions in
the external supersonic §ow. Tr. TsAGI 1363.

7. Van Dyke, í. 1967. Methods of disturbancies in §uid mechanics. Moscow: Mir.
310 p.

8. Bogolepov, V.V., and V.Ya. Neyland 1976. Investigation of locally disturbed vis-
cous supersonic §ows. In: Aeromekhanika. Moscow: Nauka. 104�18.

489



PROGRESS IN FLIGHT PHYSICS

9. Neyland, V.Ya. 1969. To the theory of laminar boundary layer separation in su-
personic §ow. Izv. AN SSSR, MZhG. 4:53�57.

10. Stewartson, K. 1969. On the §ow near the trailing edge of a §at plate.Mathematika
16(1(31)):106�21.

11. Messiter, A. F. 1970. Boundary layer near the trailing edge of a §at plate. SIAM
J. Appl. Math. 18(1):241�57.

490




